• Title/Summary/Keyword: 과학 개념 이해

Search Result 883, Processing Time 0.033 seconds

The Effects of Reciprocal Peer Questioning Strategy in Concept Learning on the Three States of Matter and Motion of Molecules (물질의 세 가지 상태 및 분자의 운동에 대한 개념 학습에서 상호동료 질문생성 전략의 효과)

  • Kim, Kyung-Sun;Kim, So-Yeon;Lee, Jung-Min;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.5
    • /
    • pp.394-403
    • /
    • 2007
  • In this study, the effects of reciprocal peer questioning (RPQ) strategy upon students' concept learning were investigated. Ninety-two seventh graders at a co-ed middle school were assigned to control, reciprocal peer tutoring (RPT), and RPQ groups. The students were taught about 'three states of matter' and 'motion of molecules' for 12 class hours. Regardless of students' prior science achievement level, the RPQ group showed the highest scores among the three groups in the test of conceptual understanding, and the RPT group performed better than the control group. For high-level students, the scores of the RPQ group were significantly higher than those of the other groups in the test of the concept application, and those of the RPT group were higher than those of the control group. For low-level students, the scores of the RPT and RPQ groups in the concept application test were significantly higher than those of the control group, while those of the RPT and RPQ groups were not significantly different. These results indicated that verbal interaction by reciprocal tutoring helped students to understand chemical concept learning, and that using self-generated questions was more effective. Therefore, RPQ strategy is suggested to become one of the useful instructional methods to facilitate verbal interaction and concept learning in middle school science instructions.

The Classification Ability with Naked Eyes According to the Understanding Level about Rocks of Pre-service Science Teachers (예비 과학교사들의 암석에 대한 이해수준에 따른 육안분류 능력)

  • Park, Kyeong-Jin;Cho, Kyu-Seong
    • Journal of the Korean earth science society
    • /
    • v.35 no.6
    • /
    • pp.467-483
    • /
    • 2014
  • This study aimed to investigate the classification ability with naked eyes according to the understanding level about rocks of pre-service science teachers. We developed a questionnaire concerning misconception about minerals and rocks. The participants were 132 pre-service science teachers. Data were analyzed using Rasch model. Participants were divided into a master group and a novice group according to their understanding level. Seventeen rocks samples (6 igneous, 5 sedimentary, and 6 metamorphic rocks) were presented to pre-service science teachers to examine their classification ability, and they classified the rocks according to the criteria we provided. The study revealed three major findings. First, the pre-service science teachers mainly classified rocks according to textures, color, and grain size. Second, while they relatively easily classified igneous rocks, participants were confused when distinguishing sedimentary and metamorphic rocks from one another by using the same classification criteria. On the other hand, the understanding level of rocks has shown a statistically significant correlation with the classification ability in terms of the formation mechanism of rocks, whereas there was no statistically significant relationship found with determination of correct name of rocks. However, this study found that there was a statistically significant relationship between the classification ability with regard to formation mechanism of rocks and the determination of correct name of rocks.

Complementary Models for Helping Secondary School Students to Develop Their Understanding of Moon Phases (중.고등학생이 이해하는 달의 위상 변화 모델 분석을 통한 보완 모델 제안)

  • Lee, Mi-Ae;Choe, Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.60-77
    • /
    • 2008
  • We investigated the textbook model explaining a phase of the Moon and compared it with student models at the secondary levels in Korea. 20 high school students and 36 middle school students from suburb area participated in this study. Participants were interviewed to explain understandings about the cause of the Moon's phase with drawing their models. The results of this study showed that the textbooks now in use explain the phase of the Moon with one unique scientific model, while students displayed 6 different kinds of models including the scientific model. Furthermore the students tend to have comparatively scientific model modes as their grades increase and their scholastic ability levels become higher. Although the students have learned the Moon's phase in school, they still have alternative models because the textbook does not explain enough for the students to overcome their alternative conceptions. In the textbook, the model presented without explanation of the limitation of the model, so there can be a gap between the model in the textbooks and the models in the mind of students. With these findings, we propose complementary models for helping secondary school students to develop their understanding of moon phases.

Sixth Graders' Inquiry Understanding for Scientific Evidence and Explanation (과학적 증거와 설명에 대한 초등학교 6학년 학생의 이해)

  • Jeong, Hei-Sawn;Oh, Eun-A
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.6
    • /
    • pp.634-649
    • /
    • 2003
  • The aim of this paper was to diagnose Korean sixth graders' understanding for scientific evidence and explanation. The instrument constructed by Jeong, Songer, and Lee (2002) was used to assess students' understanding for priority of scientific evidence, objectivity of data, relevance of evidence, data interpretation, coordination of theory and evidence, and repeated observation. Results showed that although many students recognized certain features of scientific inquiry such as objectivity of data, few of them understood why such features are valued and how to collect and use such data. In particular, students experienced difficulty in formulating explanation from evidence, not knowing, for example, that repeated observations are needed before making a general statement. The results of this study suggest that efforts to foster students' inquiry abilities need to be based on careful analyses of students existing inquiry skills and understanding.

Unplugged Learning System for Informatics Education (정보 교육을 위한 언플러그드 학습 시스템)

  • Cho, Jae-Choon;Kim, Min-Ja;Cho, Tae-Kyung;Cho, Jung-Won
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.76-79
    • /
    • 2009
  • 컴퓨터 교육은 실습 위주로, 컴퓨터를 도구적으로 활용하는 소프트웨어 활용 수업이 대부분을 차지하고 있으며, 단순한 컴퓨터 활용의 실습 수업은 학습자로 하여금 흥미를 잃게 하고 문제해결력과 창의성 개발을 저하 시킨다는 문제점들이 제기되어 왔다. 이에 개정된 7차 교육과정은 이러한 소프트웨어 활용 위주 교육의 문제점을 인식하고 컴퓨터 과학, 원리 위주의 교육으로 변화 하였다. 본 연구는 개정된 제7차 교육 과정이 컴퓨터 과학 교육으로 변화됨에 따라 컴퓨터 과학의 내용을 보다 흥미롭고 쉽게 이해시키기 위하여 언플러그드 학습 시스템을 개발 하였다. 컴퓨터 과학의 추상적이고 개념적인 내용은 중등학교의 교육과정으로는 다소 쉽지 않은 내용이며, 이론 위주의 교육과정은 학생들에게 흥미 없는 교과로 비추어 질 수 있지만, 정보 교과를 위한 언플러그드 학습 시스템을 통해 흥미 있는 교과로 인식이 변화될 것으로 기대된다.

  • PDF

Preservice Elementary Teachers' Understandings of Children's Science Misconceptions (학생들의 과학 오개념에 관한 초등 예비 교사들의 이해)

  • Jang, Myoung-Duk
    • Journal of Korean Elementary Science Education
    • /
    • v.29 no.1
    • /
    • pp.32-46
    • /
    • 2010
  • The purpose of this study was to examine preservice elementary teachers' understandings and instructional strategies about children's science misconceptions. The participants were sixty senior students from a national university of education located in the midwestern area of Korea. A questionnaire, developed on the basis of Gomez-Zwiep's semi-structured interview questions, was used. The results of this study are as follows: first, many of the preservice teachers showed appropriate understanding of 'definition of misconceptions' (96.67%), 'examples of misconceptions' (78.33%), 'resistance to change of misconceptions' (71.67%), and 'impact on instruction of misconceptions' (91.67%), except for 'sources of misconceptions' (45.00%); second, although almost all the preservice teachers (96.67%) appreciated the necessity of identifying children's misconceptions before instruction, 43.33% of the preservice teachers did not show appropriate understandings on when and how to identify children's misconceptions; third, most of the preservice teachers (81.67%) were generally aware of instructional strategies to address children's misconceptions.

  • PDF

A Study of High School Students' and Science Teachers' Understanding of Ideal Conditions involved in the Theoretical Explanation and Experiment in Physics: Part II- Focused on the Implications to the Physics Learning - (물리학에서 이론적 설명과 실험에 포함된 이상조건에 대한 고등학생과 과학교사의 이해조사 II-이상화가 물리학습에 주는 시사점을 중심으로-)

  • Park, Jong-Won;Chung, Byung-Hoon;Kwon, Sung-Gi;Song, Jin-Woon
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.2
    • /
    • pp.245-256
    • /
    • 1998
  • In this study, we discussed about the implications of the idealization, which take an important role in physics, to the physics education. First, understanding of the idealization help the physics learning itself. This is because that various types of idealizations are included in the physics terms and concepts, derivation processes of physics laws and formulas, and explanation of natural phenomena and problem solving activities. Second, understanding of the idealization can help the application of the physics world to the real world. That is, by understanding the extent and the limit of idealization used in physics world, physics students can understand the discrepancies between the real world and the physics world. And also, by modifying or eliminating the idealization, students can extend the extent of understanding about how predictions based on the idealization used in the physics world will change. To do this, we suggested the application of computer simulation program in physics laboratories. Third, idealization take an important role in the inquiry learning for students' originality. The activities of identifying or controlling the variables, as one of the principal factors of scientific inquiry, need the appropriate establishment of the ideal conditions. And to analyze the limiting case or practice the thought experiments for understanding the impossible situation in the real world, ideal conditions also are needed. This study discussed above three aspects with various concrete examples and, with Park et al.'s study (Park et al., 1998), present the theoretical basis for the study of students' and teachers' understanding the idealization.

  • PDF

A Study on Redesign and Utilization of a Convective Circulation Box for Observations of Land and Sea Breezes (해륙풍 원리 이해를 위한 대류상자 재설계와 활용에 관한 연구)

  • Yang, Mi-Seon;Yun, Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.31 no.3
    • /
    • pp.246-258
    • /
    • 2010
  • A convective circulation box was redesigned after analyzing reasons why adolescent elementary school students could not derive a convective circulation concept from the convection circulation box experiments. Even though students were in the formal operational period of Piaget, the adolescents felt difficult to understand a concept of the natural phenomena they have never seen before. Thus, we designed a method to help students increase their scientific understandings about the concept through developing a miniature convective circulation box. Findings indicated that an application of redesigned convective circulation box in the classroom experiment significantly increased the students' understanding about the convective circulations of land and sea breezes, and as well as their participation in the activities. In addition, the redesigned convective circulation box motivated students to develop their scientific thinking skills by allowing them to decide where to put visible incenses inside the box and to directly observe the smoke currents circulation formed accordingly. Redesigning and using a convective circulationbox as a miniature of natural phenomenon helps students avoid having misconceptions. The biggest merits of the box are that it is observable in all directions, it provides much clearer convective circulations comparing to the extant box, and it requires low production costs.

Investigation of elementary teachers' perspectives on science inquiry teaching (과학 탐구 지도에 대한 초등학교 교사들의 인식 조사)

  • Jeon, Kyungmoon
    • Journal of Science Education
    • /
    • v.39 no.2
    • /
    • pp.267-277
    • /
    • 2015
  • This study explored elementary school teachers' perspectives on science inquiry teaching. First, an open-ended questionnaire was administered to elicit teachers' experiences of their approach to inquiry teaching. These self-reported approaches revealed three conceptions of teaching for inquiry learning in science: 'science process skills-centered' category focused on observing, classifying, measuring, and fair testing; 'generating scientific questions' category focused on students' question-generating; and 'illustrate concept and/or content' category focused on science content demonstration by making use of experimental procedures to obtain expected results. Second, teachers were asked to place 18 activity cards either close to or further from an 'inquiry-based science classroom' card. The relative distances from the activity card to the central classroom card were measured. The teachers perceived that students' activity of 'designing and implementing appropriate procedures' was the most important in supporting an inquiry-based science classroom. Understanding teachers' views has implications for both the enactment of inquiry teaching in the classroom as well as the uptake of new teaching behaviors during professional development.

  • PDF

Considerations on the Making of Scientific Content and Processing of Biological Knowledge (생명과학 지식의 가공과 콘텐츠화 과정에 대한 연구)

  • Ahn, Sun-Young;Kim, San-Ha;Jang, Yi-Kweon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.503-513
    • /
    • 2011
  • Appreciation of nature and an understanding of the biological sciences by the general public are key to the popularization of modern science. In particular, informal and accessible venues such as museum exhibits occupy a crucial role in science education, and they depend heavily on fields related to macrobiology, including Ecology, Animal Behavior, and Environmental Science. Unfortunately, lack of engaged experts and superficial descriptions of natural phenomena all too often prevent scientific knowledge from being shared effectively with the general public. Raw information itself and knowledge are not in a form or structure accessible to nonspecialists. In order to move successfully deliver substantive comprehension of the biological knowledge to the general public, it is necessary to categorize information from a content-conscious perspective and transform it into useful biological content. Therefore, the role of scientists is critically important in a series of processes that include theme selection, editing, and even graphical layout of contents. These processes require not only a scientific and logical way of thinking, but also an aptitude for artistic presentation and effective communication. The concept of Translation is presented as a theoretical and operational framework for the popularization of science.