• Title/Summary/Keyword: 과학적 설명 구성 도구

Search Result 44, Processing Time 0.021 seconds

Changes in Explanatory Levels of Elementary Pre-service Teachers through a Scientific Explanation Construction Tool and Exploration of Its Affordances (과학적 설명 구성 도구를 통한 초등 예비교사의 설명 수준 변화와 도구의 어포던스 탐색)

  • Kim, Jong-Uk;Lim, Sung-Eun
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.4
    • /
    • pp.497-512
    • /
    • 2023
  • While scientific explanation is a fundamental component of science, teachers often lack familiarity with the formal structure of scientific explanations and the criteria for assessing their quality. Consequently, this study aims to clarify the concept of scientific explanation and proposes a tool for constructing scientific explanations. The primary objective is to explore the tool's impact on enhancing the explanatory skills of pre-service teachers when it comes to the phenomenon of condensation. The research findings indicate that many pre-service teachers initially operated at a description level during the pre-test. However, the implementation of the tool enabled them to advance their explanatory skills beyond the associative level. Notably, the tool was analyzed for its ability to provide pre-service teachers with a conceptual framework for explaining phenomena and guiding logical explanations and micro-level interpretations. This study holds significance in demonstrating that pre-service teachers can comprehend the formalities and criteria of scientific explanations and apply them to enhance their own explanatory abilities. Moving forward, efforts should be made to enhance the scientific explanation level among pre-service teachers across various topics and subject areas. Furthermore, pre-service teachers need classroom experiences that foster the construction of scientific explanations in authentic contexts.

The Analysis of Pre-Service Biology Teachers' Natural Selection Conceptions in Multiple-Choice and Open-Response Instruments (생물 예비 교사의 선택형과 개방형 문항에서 나타난 자연선택 설명 분석)

  • Ha, Min-Su;Lee, Jun-Ki
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.6
    • /
    • pp.887-900
    • /
    • 2011
  • Teachers use explanations to communicate important scientific ideas to students. Consequently, all biology teachers should be evaluated to determine how effective they are at constructing and communicating biological explanations. Open response questions are required to detect pre-service biology teachers' abilities to communicate robust and accurate scientific explanations. Nevertheless, multiple-choice questions are typically preferred by educators because of the common drawbacks of using open-response instruments, such as scoring time, inter-rater scoring disagreements, and delayed feedback to test takers. This study aims to measure pre-service biology teachers' competence in building scientific explanations and to investigate how accurately multiple-choice questions predict the results of open-response questions. One hundred twenty four pre-service biology teachers participated in the study and were administered 20 multiple-choice items and three open-response items designed to measure the accuracy and quality of their explanations of evolutionary change. The results demonstrated that pre-service teachers displayed higher competence when tested with multiple choice items than when tested with open response items. Moreover, scores derived from multiple-choice items poorly predicted the scores derived from open-response items. Multiple-choice items were also found to be poor measures of the consistency, purity and abundance of conceptual elements in teachers' evolutionary explanations. Additionally, many teachers held mixed-models composed of both scientific and naive ideas, which were difficult to detect using multiple-choice formats. Overall, the study indicates that multiple-choice formats are poorly suited to measuring several aspects of biology teachers' knowledge of evolution, including their ability to generate scientific explanations. This study suggests that open-response items should be used in teacher education programs to assess pre-service teachers' explanatory competency prior to being permitted to teach science to children.

Effects of the Explanations of Physical Phenomena Given in Non-Physics Textbooks on the Formation of Students' Physical Conceptions (물리 외 교과서에 제시된 물리적 현상 설명이 학생들의 물리 개념 형성에 미치는 영향)

  • Park, Mi-Jin;Kim, Young-Min
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.2
    • /
    • pp.155-164
    • /
    • 2003
  • The purpose of the current study was to investigate the effects of explanations about physical phenomena given in non-physics textbooks on the formation of student physical conceptions. Two classes, 39 students in each, were sampled from two middle schools in Pusan, Korea, and two kinds of test tools for investigating student conceptions were developed for the study. The first test tool(a) investigated student conceptions after reading explanations about physical phenomena in non-physics textbooks, while the second(b) investigated student conceptions after reading explanations revised by physics education experts about the same physical phenomena. The two test tools were applied to each class, and for a fair invetigation, test(a) followed by test(b) was applied to one class, while test(b) followed by test(a) was applied to the other class. The results were as follows: In both classes, the students' level of understanding from explanations revised by physics education experts was significantly (p < .01) higher than that from explanations in non-physics textbooks. As such, it is feasible that false or inappropriate explanations in non-physics textbooks can cause student misconceptions. Moreover, the improper expression of physical science concepts, improper choice of scientific terms, and incorrect grammatical structures, along with the use of unsuitable examples and improper model pictures can make it difficult for students to understand physics concepts. Furthermore, differences in the terms used in physics textbook and those used in other textbooks can also confuse students' learning.

Development and Application of the a Measuring Instrument for Perception of Science Classes Based on the View of 'Community of Inquiry in Science Classroom' ('과학 교실 탐구공동체' 관점 기반 과학 수업 인식 조사 도구 개발 및 적용)

  • Joung, Yong Jae;Chang, Jina
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.2
    • /
    • pp.273-290
    • /
    • 2017
  • The purposes of this study are to develop a measuring instrument for perception of science classes based on the view of 'Community of Inquiry in Science Classroom' and to investigate elementary school students' perceptions with the instrument developed in the study. A total of 417 6th grade students participated in this study. As a result, first, we developed two set of questionnaire: (a) the questionnaire for the 'process of inquiry' consisted of six factors: 'problem recognition I: recognition of inconsistency,' 'problem recognition II: interests,' 'problem explanation I: hypothesis generation and examination,' 'problem explanation II: cooperative review,' 'problem solving I: reflection on the change of relationship with objects/conceptions,' and 'problem solving II: reflection on the change of relationship with community/ inquirer,' comprising a total of 42 items; (b) the questionnaire for the 'basis of inquiry' consisted of three factors:'will of conducting inquiry,' 'attitudes of conducting inquiry,' and 'structure of communication,' comprising a total of 17 items. Second, we found that elementary school students had positive recognition generally on their science classes in terms of the 'community of inquiry in science classroom,' but they had relatively negative recognition on the factors of problem recognition based on recognition of inconsistency, problem solving accompanied with reflection on the change of relationship with objects/conceptions, and attitudes of conducting inquiry based on severity and fallibilism, Finally, several suggestions for the science education were given.

Analysis of the recommended science books' suitability for elementary school students (초등학생 과학 추천도서의 적합성 분석)

  • Nam, Juseok;Jhun, Youngseok
    • Journal of Science Education
    • /
    • v.39 no.3
    • /
    • pp.434-445
    • /
    • 2015
  • In this study, science recommended books for elementary school students were analyzed. For the study, the screening tool with a number of criteria was produced. In order to develope a screening tool, we examined several previous studies and references. After that, through discussion and exchange of opinions, the preliminary screening tool was made. In order to ensure the reliability and validity, the pilot test was conducted. Then, detailing questions and modifications have been made by exchange of ideas. And nine science recommended books were analyzed. The results are as follows. First, as a result of examining recommended books, exploration and the nature of science were received a low rating. Second, description of the scientific knowledge was not sufficient. This discussion can be obtained through the following. First, when selecting recommended books, care should be taken in exploration and the nature of science. Second, a wide range of science trade books needs to study more.

  • PDF

The 2D Drawing-Based Authoring Tool for Scientific Inquiry Learning Virtual Environments (과학적 탐구학습 가상환경을 위한 2차원 Drawing 기반 저작도구)

  • Im, Jae-Won;Park, Kyoung-Shin;Cho, Yong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1303-1311
    • /
    • 2009
  • This paper describes a new visual VR authoring tool called DEVISE (Drawing Environment for VR-based Inquiry-learning Science Education) which is designed to support scientific inquiry learning. DEVISE allows users with no programming expertise to easily build the science inquiry learning VR contents by using 2D drawing interface to place 3D objects and specify properties of the virtual worlds or objects. This paper first describes the related works of VR authoring tools and inquiry learning virtual environments. It also explains SASILE, an integrated virtual environment system for supporting science inquiry learning, and its problems. Then, it describes DEVISE system components and its workflow, and it discusses the observation results of user evaluations of developing science inquiry-learning VR contents.

Students' Understanding about the Analogies for Physics Concepts Used in Korean Middle School Science Textbooks (중학교 과학 교과서의 물리 개념 설명에 사용된 비유에 대한 학생들의 이해도 조사)

  • Kim, Young-Min;Park, Hee-Sook
    • Journal of The Korean Association For Science Education
    • /
    • v.20 no.3
    • /
    • pp.411-420
    • /
    • 2000
  • The purpose of this study was to investigate how many students understood the analogies for physics concepts used in middle school science textbooks, and which types of analogies they understood better than others. We classified the analogies into the following 4 types: verbal and simple analogy, verbal and enriched analogy, pictorial and simple analogy, and pictorial and enriched analogy. For the study, 46 students were sampled from a middle school in Ulsan city in Korea, and a tool for testing their understanding of analogies were developed. The tool is composed of 8 items, and its face validity about contents and difficulty was verified by 5 experts. It was found that in average only about 50% of the students understood the analogies in the middle school science textbooks averagely, and that the students understood pictorial and simple analogies better than the other types of analogies.

  • PDF

DFR Process for Brake Pad Reliability Improvement (브레이크 패드 신뢰성향상을 위한 DFR프로세스 개발)

  • Ismail, Azianti;Jung, Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.3
    • /
    • pp.180-186
    • /
    • 2012
  • 신제품 개발에 있어서 제품의 잠재적 고장모드를 줄이기 위한 설계 노력은 매우 중요하며 이를 위해서는 체계적이고 혁신적인 신뢰성프로그램을 적용하는 것이 반드시 필요하다. 기업에서 동시공학을 기초로 한 건전한 신뢰성프로그램에 포함된 주요활동으로는 DFR(Design for Reliability), 신뢰성검증 및 물리적 해석활동 등이 있으며, 이 중 DFR은 제품 개발을 지원하는 첫 번째 과학적 신뢰성활동이다. 본 연구는 브레이크패드의 신뢰성을 향상시키기 위하여 회사조직전체에서 여러 부서의 팀 구성원이 유기적으로 참여하는 DFR 프로세스를 조직하고 실행하는 전략과 기술에 대한 연구이다. 본 사례연구의 동기는 해당기업에서 DFR에 적용된 모든 도구와 기술을 통해 제품의 신뢰성을 향상시키고 동시에 글로벌시장의 잠재고객에 대하여 품질과 신뢰성에 대한 확신을 주는데 유용하게 활용하기 위함이다. 본 논문에서는 제품개발주기의 개념설계단계 부터 제품의 폐기까지의 DFR 개념 전개에 대하여 설명하고, 기술적 도구를 적용한 설계초기 단계에서의 분석사례를 제시하였다.

Development of Interactive e-Learning Authoring Tool for Computational Engineering (인터랙티브 계산공학 이러닝 콘텐츠 저작도구 개발)

  • Shin, jung-hun;Ryu, gi-myeong;Jang, cheol-hoon;Lee, sik;Cho, kum-won
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.413-414
    • /
    • 2017
  • 계산공학 분야는 복잡한 수치이론과 계산 실행 및 분석 툴의 중요성이 높기 때문에 온오프라인 모두에서 효과적인 교육을 수행하는 것이 힘든 실정이다. 본 논문에서는 오프라인 저작도구와 EDISON 플랫폼을 두축으로 효과적인 웹기반 이러닝 환경을 구축하는 과정을 설명하였다. 특징으로는 웹기반이지만 데스크탑에서 오프라인으로 동영상/발표자료/외부링크 등의 이종 콘텐츠들을 조합하여 강의를 구성할 수 있는 저작도구가 있다는 것이다. 또한 계산과학공학 플랫폼인 EDISON의 계산실행 포틀릿을 활용하여 인터랙티브 실습교육 환경을 구성하였다는 것이다. 본 이러닝 시스템은 대학 및 현장에서의 즉각적인 이론습득 및 실습 요구에 대응할 수 있을 것으로 사료된다.

  • PDF

Development and Validation of Visual Representation Competence Taxonomy (과학 교수 학습을 위한 시각적 표상 능력의 교육목표 분류체계 개발 및 타당화)

  • Yoon, Hye-Gyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.2
    • /
    • pp.161-170
    • /
    • 2018
  • Various forms of visual representations enable scientific discovery and scientific reasoning when scientists conduct research. Similarly, in science education, visual representations are important as a means to promote students' understanding of science concepts and scientific thinking skills. To provide a framework that could facilitate the effective use of visual representations in science classroom and systemic science education research, a visual representation competence taxonomy (VRC-T) was developed in this study. VRC-T includes two dimensions: the type of visual representation, and the cognitive process of visual representation. The initial categories for each dimension were developed based on literature review. Then validation and revision was made by conducting teachers' workshop and survey to experts. The types of visual representations were grouped into 3 categories (descriptive, procedural, and explanative representations) and the cognitive processes were grouped into 3 categories (interpretation, integration, and construction). The sub categories of each dimension and the validation process would be explained in detail.