• Title/Summary/Keyword: 과학적 모형

Search Result 2,233, Processing Time 0.034 seconds

The Theoretical Review of the Feature and Application of Science Teaching Models (과학 교수 모형의 특징과 적용에 대한 이론적 고찰)

  • Cho, Hee-Hyung;Kim, Hee-Kyung;Yoon, Hee-Sook;Lee, Ki-Young
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.5
    • /
    • pp.557-575
    • /
    • 2010
  • The purpose of the study was to suggest the characteristics and goals of the science teaching model for use as criteria in selecting the appropriate teaching model for science in secondary schools. These characteristics and the goals have been organized based on the analyses of the literature on the teaching and/or instructional model. The teaching models have been classified into four areas, and the characteristics and goals of each area have been summarized as follows: $\cdot$ Traditional models: teaching of scientific knowledge through lectures, acquisition of scientific knowledge through discovery, acquisition of inquiry process skills through inquiry-based teaching/learning $\cdot$ Transitional models: demonstration and discovery as teaching strategies, acquisition of inquiry process skills through inquiry approach, acquisition and change of scientific knowledge $\cdot$ Modernistic model - conceptual change models: differentiation of scientific knowledge, exchange of misconceptions for scientific concepts - learning cycle models: conceptual differentiation, exchange of misconceptions, acquisition of science process skills Also described in this paper are the model's characteristics and goals that can be used as the criteria for selecting the appropriate teaching model for the subject that will be taught.

Analysis of the Types of Scientific Models in the Life Domain of Science Textbooks (중등 과학 교과서의 생명 영역에 제시된 과학적 모형들의 유형 분석)

  • Kim, Mi-Young;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.4
    • /
    • pp.423-436
    • /
    • 2009
  • This study aims to develop an analytic framework that can be used to classify scientific models in science textbooks according to modes and attributes of representation and to investigate types of scientific models presented in the biology section of science textbooks for the $7^{th}$ to $10^{th}$ grades. The results showed that modes of representation of scientific models are related to the nature of sub-areas of biology sections. Generally, the iconic model and symbolic model were in dominant use, including drawings of organs and explanations of working of systems. However, the chapters on 'The Organization of Life' and 'The Continuity of Life' showed a relatively high frequency in use of the actual model. The theoretical model was presented in a part of 'The Continuity of Life', due to its highly abstract characteristics. Moreover, the gestural model and analogical model showed very low frequency. From the perspective of attributes of representation, frequency of the static model was very high, while one of the dynamic models was very low. Therefore, efforts to recognize the properties of scientific concepts more clearly and to develop diverse types of models that can represent the concepts adequately are required. Analysis of these types of scientific models can offer recognition of the usefulness and limitations of models in representing the concepts or phenomena, and can help us to design adequate models depicting particular properties of given concepts. Also, this type of analysis may motivate researchers to strive to reveal correct methods for and limits of using the scientific models that are presented in existing science textbooks, as well as to provide useful information to organize the science textbooks according to the revised $7^{th}$ national science curriculum.

Analysis of Scientific Models in Science Textbooks for the 7th Grade (중학교 과학 교과서 물질 영역의 과학적 모형 유형 분석)

  • Kim, Ae-Jung;Park, Hyun-Ju;Kim, Chan-Jong;Kim, Heui-Baik;Yoo, June-Hee;Choe, Seung-Urn
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.3
    • /
    • pp.363-370
    • /
    • 2012
  • The purpose of the study was to classify scientific models in the seventh grade science textbooks of the 2007 revised science curriculum. The three chapters of 'three states of material', 'motion of molecule', and 'change of state and energy' were investigated. There were two types of the scientific model as 'mode of representation' and 'attribute of representation'. The mode of representation was composed of 'action model', 'analogical model', 'symbolic model', and 'theoretical model' and the attribute of representation was composed of 'static model' and 'dynamic model'. The results showed that the action model and the analogical model were used primarily in mode of representation. The dynamic model were widely used in attribute of representation. Area of matters dealt with conception of molecules and aimed for students to understand the arrangement and movement of molecule microscopically about macroscopic state in a daily life. Tis study could help to recognize the limitations of scientific models on current textbooks and offer more useful information in planning lessons and organizing textbooks for the future.

A Model of Web Based Science Cyber Experiment (웹 기반에서의 과학 가상 실험 모형)

  • 김창헌;백두권
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.228-234
    • /
    • 2000
  • 본 논문에서는 웹 기반에서 과학 실험을 효과적으로 구현하기 위한 과학 가상 실험 모형을 제시하였다. 위의 목적을 달성하기 위하여, 시뮬레이션 이론과 웹 기반 수업 이론, 그리고 과학 학습 모형을 탐색하였으며, 이를 근거로 하여 과학 가상 실험 모형을 설계하고 프로그램을 구현하였다. 본 논문을 통하여 과학 가상 실험 모형은 크게 안내적 실험 모형(guided experiment model)과 자기주도적 실험 모형(self-directed experiment model)으로 구분하였다.

  • PDF

Development of a Play-Learning Model in Science Museum (과학관 놀이-학습 모형 개발)

  • Kwon, Yi-Young;Jeong, Eunyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.2
    • /
    • pp.191-202
    • /
    • 2016
  • In this study, a science museum teaching-learning model was developed with emphasis on play. In order to do this, the models of factor-centered museum education and process-centered museum education were reviewed and characteristics of science museum education were considered. The model developed in this study is called 'Play-Learning Model in Science Museum', and 'play' is defined as activities to achieve the mission in accordance with methods and rules set by individuals or small groups including scaffolding and play is divided into competition, simulation, and chance. 'Play-Learning Model in Science Museum' emphasizes learning using the articles on exhibition, scaffolding and interaction in small groups, and play. The model consists of four steps: 'Preparation', 'Exploring the exhibits', 'Experience', and 'Summary of learning content'. In the 'Preparation' step, the students form related knowledge and are ready to play. The 'Exploring the exhibits' step is the core step of this model, and entails the students solving problems in the mission by interacting with members of the small group. When they cannot find resolution, they get help. In the 'Experience' step, hands-on activities related to the prior step are included. In the 'Summary of learning content' step, the students summarize what they learned while playing. As science museum education is implemented in a variety of forms, continuous research about the science museum learning model and development of various programs are needed.

The Analysis of the Educational Objectives, Scientific Models and Cognitive Processes in Scientific Inquiry of the SNU Scientifically Gifted Student Program (서울대학교 과학 영재 프로그램의 학습 목표, 과학적 모형, 과학탐구의 인지 과정 분석)

  • Shin My-Young;Chun Miran;Choe Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.26 no.5
    • /
    • pp.387-394
    • /
    • 2005
  • We have analyzed the science-gifted educational program (year 2002) at the Seoul National University in terms of its educational objectives, scientific models, and cognitive processes in scientific inquiry in order to provide insights into developing and improving science-gifted educational program. We assumed the following items as important factors for teaching scientifically gifted students: higher-order thinking skills involving synthesis domain in the educational objectives, highly abstract nature and complexity in the scientific models, cognitive processes of planning experiments in the cognitive processes in scientific inquiry. According to the analyzed results, the program has the following characteristics: (1) the rates of both higher and lower-order thinking skill domain in the educational objectives are similarly high, but the rate of synthesis domain is relatively low; (2) in the case of the scientific models, the rate of the multiple concepts and/or processes model is relatively low, while the level of the abstractness is relatively on average (3) cognitive processes of authentic scientific inquiry is not thoroughly reflected in the scientific inquiry activities, and very few cognitive processes of planning experiments factor is reflected. Therefore, we conclude in the synthesis domain in the educational objectives, multiple concepts and/or processes model, and cognitive processes of planning experiments should be especially reflected more on the science-gifted educational program in order to serve the needs of scientifically gifted students.

Effect of Science Conceptual Model Completion Activity and Science Conceptual Model Modifying Activity on Middle-school Students' Achievement in Science Conceptual Learning (미완성 개념 모형의 완성 활동 및 주어진 개념 모형의 수정 활동이 중학생의 과학 개념 학습 성취도에 미치는 효과)

  • Kim, Jung-Kuk;Kim, Won-Sook;Kim, Young-Min
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • The purposes of this study are to investigate the effects of the Science Conceptual Model Completion Activity and Science Conceptual Model Modifying Activity on middle-school students' achievement in science conceptual learning, and to analyze if there are any correlations among their achievements by purposed activities, their cognitive level and school science achievement. For the study, 112 middle school students were sampled for three groups, which are two experimental groups (Model Completion activity group, Model Modifying Activity group) and one control group. Pre- and post-tests were taken to measure the students' achievement in science concepts, and the logical thinking ability test was administered after the implementation period. In addition, their school science achievements were analyzed. The research findings are as follows: First, the Science Conceptual Model Completion activity is more effective for middle school students' science conceptual learning than the Science Conceptual Model Modifying activity or conventional activity. Second, higher school science achievement also results in higher achievement of science concepts through the Conceptual Model Modifying activity or the Conceptual Model Completion activity. Lastly, the Conceptual Model Completion activity is more effective for the concrete operational level students to attain science concepts than formal operational level ones. Meanwhile, on the contrary, the Conceptual Model Modifying activity is more effective for formal operational level students than the concrete operational level ones.

Recognition of the Nature of Science by Preservice Science Teachers on the Basis of the Atomic Model (원자모형에 기초한 예비과학교사들의 과학의 본성에 대한 인식)

  • An, Yu-La;Kim, Hyun-Joo
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.4
    • /
    • pp.539-556
    • /
    • 2011
  • The purpose of this study was to examine preservice secondary science teachers' understanding of the nature of science, by using nature of science (NOS) questionnaire on the basis of atomic model, and compare this to pre-studies. 'Understanding of nature of scientific model,' 'Tentativeness of scientific knowledge,' 'Subjectivity in science,' 'Use of inference and imagination,' 'Myths of the scientific method,' and 'Comparison between science and art.' were examined. Preservice teachers showed great comprehension of the tentativeness of scientific knowledge (the orbital model) and the subjectivity in science (the different interpretation about the experiment of particle scattering), but displayed the lowest comprehension of the scientific method. For understanding of nature of scientific model (the atomic model) and the comparison between science (Bohr's atomic model) and art (Picasso's work), preservice teachers brought out a combination of ontological and constructivist perspective and showed the contradictory thought about imagination in science research. In the result of comparison to pre-studies using the NOS instruments contains general terms, represented high levels of agreement about the tentativeness of scientific knowledge by using concrete examples of 'atomic model'. When concrete scientists such as Thomson, Rutherford, Bohr were presented, respondents revealed more informed views about the scientists' research method.

Design of Instructional Models for Underserved Science Gifted Students (소외된 과학영재들의 사고력 향상을 위한 수업모형 설계)

  • Park, Ki-yong;Park, Eun-young;Jung, Eun-shik
    • Journal of Science Education
    • /
    • v.33 no.2
    • /
    • pp.321-335
    • /
    • 2009
  • The purpose of this study was to design of instructional models for underserved science gifted students, especially developing the thinking skills. We made orientation and methodology to design of instructional models. According to these orientation and methodology, we designed instructional models that improving cognitive thinking and affective attitude of underserved science gifted students. Particularly, we designed instructional models that is composed of objective, activity, evaluation. According to the Bloom's cognitive educational objective taxonomy(cognitive thinking process) and Krathwohl's affective educational objective taxonomy(affective attitude), we designed integrated(cognitive and affective) and progressive 4 stages or steps instructional models.

  • PDF

Development of a Mentorship Education Model for the Gifted of the Science Education Institute (과학영재교육원 사사교육을 위한 모형 개발)

  • Yoon, Ki-Sang;Kim, Beom-Ki
    • Journal of Science Education
    • /
    • v.35 no.1
    • /
    • pp.48-58
    • /
    • 2011
  • This study was performed to develop a model for mentorship education in the science education institute for the gifted. Existing mentorship education models were focused on R&E, which involved science high school students as research participants. For this purpose, a new model was proposed with comparatively definite stages and terms, and based on the theoretical background concerning science inquiry abilities and scientific creativities or the mentorship education in the science education institute for the gifted. Existing mentorship models for science-gifted students were analyzed and compared with the scientific inquiry process and science paper form. A science paper form consisting of four stages was selected. A new model was constructed consisting of six stages, and this model was modified to be made fit for application to students in the physics mentorship course at the science education institute for the gifted in K National University. Good points and improvable points of the model through the application were identified, and the model was modified accordingly. In conclusion, a new model was proposed as a mentorship model for science-gifted students. This model was constructed using the PREPARATION-INTRODUCTION-METHOD-RESULT-CONCLUSION-FINISH format.

  • PDF