Lim, Jong Yeon;Kim, KwangHoon;Won, DongKyu;Yeo, Woon-Dong
The Journal of the Korea Contents Association
/
v.19
no.3
/
pp.261-274
/
2019
This paper aims to develop an appropriate methodology for establishing an investment strategy for 'demonstration of artificial rainfall technology using UAV' and that include establishment of a technology classification, set of indicators for technology evaluation, suggestion of final key technology as a whole study area. It is designed to complement the latest research trend analysis results and expert committee opinions using quantitative analysis. The key indicators for technology evaluation consisted of three major items (activity, technology, marketability) and 10 detailed indicators. The AHP questionnaire was conducted to analyze the importance of indicators. As a result, it was analyzed that the attribute of the technology itself is most important, and the order of closeness to the implementation of the core function (centrality), feasibility (feasibility). Among the 16 technology groups, top investment priority groups were analyzed as ground seeding, artificial rainfall verification, spreading and diffusion of seeding material, artificial rainfall numerical modeling, and UAV sensor technology.
Journal of The Korean Association For Science Education
/
v.28
no.6
/
pp.565-578
/
2008
The purpose of this study is to search for the factors that influence students' understanding of the nature of science through the experience of the cognitive processes of authentic open inquiries. The freshmen of a science high school practiced authentic open inquiries reflecting epistemological characteristics of authentic science. The case study was conducted with four focus students who were successful or unsuccessful at learning the nature of science during the authentic open inquiry activity. Questions that the focus students asked during the inquiries as well as students' answers to pre- and post-VNOS (C type) were analysed, and then elaborated in the semi-structured interview. The findings suggest that open inquiry activities provide the inquiry contexts that help science high school students to understand the nature of science, and that the characteristics of students' cognition influence the understanding of the nature of science. For instance, designing experiments with their own research questions had an influence on the students' understanding about the scientific methods and the diversity of research types, and drawing conclusions from their own data made students experience scientific reasoning. In addition, the experience of collecting anomalous data helped students to understand the role of inferences in generating scientific knowledge and the creative nature of scientific knowledge. In this inquiry context, the reflective thinking that came from proactive discussion among students, made students think about the validity of the designing experiments and interpreting data, and helped them to understand the uncertain nature of reasoning and the diverse nature of scientific methods. Moreover, divergent thinking linked to analogical thinking helped students to understand the creative nature of science.
Recently, with the development of Smart City Solutions such as Big data, AI, IoT, Autonomous driving, and Digital twins around the world, the proliferation of various smart devices and social media, and the record of the deeds that people have left everywhere, the construction of Smart Cities using the "Big Data" environment in which so much information and data is produced that it is impossible to gauge the scale is actively underway. The Purpose of this study is to construct an objective and systematic analysis Model based on Big Data to improve the transportation convenience of citizens and formulate efficient policies in Urban Information and Public Transportation accessibility in sustainable Smart Cities following the 4th Industrial Revolution. It is also to derive the methodology of developing a Big Data-Based public transport accessibility and policy management Platform using a sustainable Urban Public DB and a Private DB. To this end, Detailed Living Areas made a division and the accessibility of basic living amenities of Gwangju Metropolitan City, and the Public Transportation system based on Big Data were analyzed. As a result, it was Proposed to construct a Big Data-based Urban Information and Public Transportation accessibility Platform, such as 1) Using Big Data for public transportation network evaluation, 2) Supporting Transportation means/service decision-making based on Big Data, 3) Providing urban traffic network monitoring services, and 4) Analyzing parking demand sources and providing improvement measures.
The explosive growth of data and the rapidly changing technical social evolution new analysis paradigm for predicting and reacting the future the past and present ig data. Prescriptive analysis has a fundamental difference because can support specific behaviors and results according to user's goals with defin researchers establish judgments and activities achiev the goals. However research methods not widely implemented and even the terminology, Prescriptive analysis, is still unfamiliar. This paper thus propose an infrastructure in the prescriptive analysis field with key considerations for enhancing capability of researchers through a case study based on InSciTe Advisory developed with scientific big data. InSciTe Advisory system s developed in 2013, and offers a prescriptive analytics report which contains various As-Is analysis results and To-Be analysis results 5W1H methodology. InSciTe Advisory therefore shows possibility strategy aims to reach a target role model group. Through the availability and reliability of the measurement model the evaluation results obtained relative advantage of 118.8% compared to Elsevier SciVal.
The relationships between science, technology, and industry are very complicated and vary according to time. Thus, it would be almost impossible to combine the three categories in a single model. However, the linking of science, technology, and industry, which are divided according to their respective classification standards, is a starting point from which to understand how science and technology, technology and industry, and further science, technology, and industry are related to each other. Studies have been carried out to analyze the relationship between science and technology and between technology and industry, whereas no study has been undertaken to get an overall view of science, technology, and industry. Since an appropriate methodology or an analytical model has not been suggested, this paper proposes a model for generally analyzing science, technology, and industry. More specifically, this paper examines the methodology for linking science, technology, and industry. This paper uses citation analysis to analyze knowledge flow such as absorption and utilization of given knowledge, looks at the provision of knowledge to create new knowledge, and examines the use of network analysis to analyze the complicated phenomenon of knowledge flow. This paper proposes an empirical study of trend analysis of technological innovation by looking into a linkage structure of knowledge flow among science, technology, and industry based on the classification linkage and analysis methodology using scientific paper and patents.
Kim, Young-Min;Lee, Jiyoung;Yoon, Illo;Han, Taekjin;Kim, Chulyeon
KIISE Transactions on Computing Practices
/
v.24
no.3
/
pp.151-156
/
2018
In this paper, a method to classify objects in outdoor CCTV images using Convolutional Neural Network(CNN) and background subtraction is proposed. Object candidates are extracted using background subtraction and they are classified with CNN to detect objects in the image. At the end, computation complexity is highly reduced in comparison to other object detection algorithms. A database is constructed by filming alleys and playgrounds, places where crime occurs mainly. In experiments, different image sizes and experimental settings are tested to construct a best classifier detecting person. And the final classification accuracy became 80% for same camera data and 67.5% for a different camera.
Journal of The Korean Association For Science Education
/
v.40
no.6
/
pp.657-670
/
2020
The knowledge-information-processing competency is the most essential competency in a knowledge-information-based society and is the most fundamental competency in the new problem-solving ability. Data-driven science inquiry, which emphasizes how to find and solve problems using vast amounts of data and information, is a way to cultivate the problem-solving ability in a knowledge-information-based society. Therefore, this study aims to develop a teaching-learning model and strategy for data-driven science inquiry and to verify the validity of the model in terms of knowledge information processing competency. This study is developmental research. Based on literature, the initial model and strategy were developed, and the final model and teaching strategy were completed by securing external validity through on-site application and internal validity through expert advice. The development principle of the inquiry model is the literature study on science inquiry, data science, and a statistical problem-solving model based on resource-based learning theory, which is known to be effective for the knowledge-information-processing competency and critical thinking. This model is titled "Exploratory Scientific Data Analysis" The model consisted of selecting tools, collecting and analyzing data, finding problems and exploring problems. The teaching strategy is composed of seven principles necessary for each stage of the model, and is divided into instructional strategies and guidelines for environment composition. The development of the ESDA inquiry model and teaching strategy is not easy to generalize to the whole school level because the sample was not large, and research was qualitative. While this study has a limitation that a quantitative study over large number of students could not be carried out, it has significance that practical model and strategy was developed by approaching the knowledge-information-processing competency with respect of science inquiry.
Lockscreen is one of the most frequently encountered interfaces by smartphone users. Although users perform unlocking actions every day, there are no benefits in using lockscreens apart from security and authentication purposes. In this paper, we replace the traditional lockscreen with an application that analyzes facial expressions in order to collect facial expression data and provide real-time feedback to users. To evaluate this concept, we have implemented Quantified Lockscreen application, supporting the following contributions of this paper: 1) an unobtrusive interface for collecting facial expression data and evaluating emotional patterns, 2) an improvement in accuracy of facial expression detection through a personalized machine learning process, and 3) an enhancement of the validity of emotion data through bidirectional, multi-channel and multi-input methodology.
This study employees a supervised learning prediction model to detect nonconformity in advance of processed food manufacturing and processing businesses. The study was conducted according to the standard procedure of machine learning, such as definition of objective function, data preprocessing and feature engineering and model selection and evaluation. The dependent variable was set as the number of supervised inspection detections over the past five years from 2014 to 2018, and the objective function was to maximize the probability of detecting the nonconforming companies. The data was preprocessed by reflecting not only basic attributes such as revenues, operating duration, number of employees, but also the inspections track records and extraneous climate data. After applying the feature variable extraction method, the machine learning algorithm was applied to the data by deriving the company's risk, item risk, environmental risk, and past violation history as feature variables that affect the determination of nonconformity. The f1-score of the decision tree, one of ensemble models, was much higher than those of other models. Based on the results of this study, it is expected that the official food control for food safety management will be enhanced and geared into the data-evidence based management as well as scientific administrative system.
Though the SNA (social network analysis ; SNA) has been used for various fields, esp. social science field, ig. politics, journalism, and science of public administration as well as natural science field, there are few studies about the introduction of analysis tools. In order to perform the SNA, collecting data which are fit for the purpose, statistical values deduction and visualized results made by analysis tool are necessary, but the studies, which explain them systematically, are not sufficient yet. So, in this study, we are intended to introduce the analytic process, from the data input to the interpretation, with proven data. using the R program, which is free, in order to help researchers who have any plan to study using the SNA. The proven data in this study are quoted ones in the domestic scientific journals of food, which are those supplied citation index DB of Korean scientific journals. As a study methodology, the SNA is a new paradigm to substitute existing research methods as well as a complement of statistical analysis. Therefore, this study would contribute to vitalization of the SNA.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.