• Title/Summary/Keyword: 공학분석

Search Result 25,814, Processing Time 0.057 seconds

Implementation of IoT-based carbon-neutral modular smart greenhouse (IoT 기반 탄소중립 모듈형 스마트 온실 구현)

  • Seok-Keun Park;Kil-Su Han;Min-Soon Lee;Changsun Shin
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.36-45
    • /
    • 2023
  • Recently, in digital agriculture, the types and utilization of greenhouses based on IoT are spreading, and greenhouses are being modernized, enlarged, and even factoryized using smart technology. However, a specific standardization plan has not been proposed according to the equipment for data collection in the smart greenhouse and the size or shape of the greenhouse. In other words, there is a lack of standard data for facility equipment, such as the type and number of sensors and equipment according to the size of the greenhouse, the type of greenhouse construction film and materials suitable for crops and carbon neutrality. Therefore, in this study, the suitability of the implementation, installation and quantity of IoT equipment for data collection was tested, and some standard technologies were presented through the implementation of data collection and communication methods. In addition, impact strength, tensile, tear, elongation, light transmittance, and lifespan issues for PE, PVC, and EVA, which account for about 90% of existing greenhouses, were presented, and the shape, size, and environmental problems of greenhouses made of films were presented. presented in the text. In this research paper, a standardized carbon-neutral modular smart greenhouse using nano-material film was implemented as a solution to environmental problems such as greenhouse size, farm crop type, greenhouse lifespan, and film, and its performance with existing greenhouses was analyzed and presented. Through this, we propose a modularized greenhouse that can be expanded or reduced freely without distinction in the size of the greenhouse or the shape of farmhouse crops, and the lifespan is extended and standardized. Finally, the average characteristics of greenhouses using existing PE, PVC, and EVA films and the characteristics of greenhouses using new carbon-neutral nanomaterials are compared and reviewed, and a plan to implement an expandable IoT greenhouse that supports carbon neutrality is proposed.

Characteristics of Functional Components of Red Ginseng Concentrate First Extracted at Low Temperature I - Focused on Ginsenoside - (저온에서 1차 추출한 홍삼농축액의 기능성분 특성 I - Ginsenoside 위주로 -)

  • Su Hyun Lee;Keon Shin;Seon Yeung Jo;Young Sig Park
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.3
    • /
    • pp.176-183
    • /
    • 2023
  • The extraction and filtration of red ginseng with a mixed solvent of water and alcohol-a common processing method-and the production of a concentrate through heat treatment, such as steaming, leads to its hydrolysis or polymerization. Approximately 200 ginsenosides have consequently been detected in small amounts, in addition to the identification of the functions of approximately 30 major ginsenosides. This complicates the identification of the functionality of red ginseng and its efficacy, and has negative effects as a functional food, as the astringent taste becomes stronger with an increase in the number of extractions. The red ginseng concentrate was, therefore, extracted at a low temperature (less than 40 ℃) and processed to eliminate these negative aspects, with a specific focus on the characteristics of the functional components of ginsenosides.

Development of a Single Allocation Hub Network Design Model with Transportation Economies of Scale (수송 규모의 경제 효과를 고려한 단일 할당 허브 네트워크 설계 모형의 개발)

  • Kim, Dong Kyu;Park, Chang Ho;Lee, Jin Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.917-926
    • /
    • 2006
  • Transportation Economies of scale are the essential properties of hub networks. One critical property of the hub network design problem is to quantify cost savings which stem from economies of scale, the costs of operating hub facilities and opportunity costs associated with delays stemming from consolidation of traffic flows. Due to the NP-complete property of the hub location problem, however, most previous researchers have focused on the development of heuristic algorithms for approximate solutions. The purpose of this paper is to develop a hub network design model considering transportation economies of scale from the consolidation of traffic flows. The model is designed to consider the uniqueness of hub networks and to determine several cost components. The heuristic algorithms for the developed model are suggested and the results of the model are compared with recently published studies using real data. Results of the analysis show that the proposed model reflects transportation economies of scale due to consolidation of flows. This study can form not only the theoretical basis of an effective and rational hub network design but contribute to the assessment of existing and planned logistics systems.

Evaluation of Proper Level of the Longitudinal Prestress for the Precast Deck of Railway Bridges Considering the Temperature Change (철도교용 프리케스트 바닥판의 온도변화를 고려한 적정한 종방향 프리스트레스 수준의 산정)

  • Jeon, Se Jin;Kim, Young Jin;Kim, Seong Woon;Kim, Cheol Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.499-509
    • /
    • 2006
  • Precast concrete deck has many advantages comparing with the in-situ concrete deck, and has been successfully applied to replacement of the deteriorated decks and to the newly constructed highway bridges in domestic region. In order to apply the precast decks into the railway bridges, however, differences of the load characteristics between the highway and the railway should be properly taken into account including the train load, longitudinal force of the continuous welded rail, acceleration or braking force, temperature change and shrinkage. Proper level of the longitudinal prestress of the tendons that can ensure integrity of the transverse joints in the deck system is of a primary importance. To this aim, the longitudinal tensile stresses induced by the design loads are derived using three-dimensional finite element analyses for the frequently adopted PSC composite girder railway bridge. The effect of the temperature change is also investigated considering the design codes and theoretical equations in an in-depth manner. The estimated proper prestress level to counteract those tensile stresses is above 2.4 MPa, which is similar to the case of the highway bridges.

Dynamic Nonlinear Prediction Model of Univariate Hydrologic Time Series Using the Support Vector Machine and State-Space Model (Support Vector Machine과 상태공간모형을 이용한 단변량 수문 시계열의 동역학적 비선형 예측모형)

  • Kwon, Hyun-Han;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.279-289
    • /
    • 2006
  • The reconstruction of low dimension nonlinear behavior from the hydrologic time series has been an active area of research in the last decade. In this study, we present the applications of a powerful state space reconstruction methodology using the method of Support Vector Machines (SVM) to the Great Salt Lake (GSL) volume. SVMs are machine learning systems that use a hypothesis space of linear functions in a Kernel induced higher dimensional feature space. SVMs are optimized by minimizing a bound on a generalized error (risk) measure, rather than just the mean square error over a training set. The utility of this SVM regression approach is demonstrated through applications to the short term forecasts of the biweekly GSL volume. The SVM based reconstruction is used to develop time series forecasts for multiple lead times ranging from the period of two weeks to several months. The reliability of the algorithm in learning and forecasting the dynamics is tested using split sample sensitivity analyses, with a particular interest in forecasting extreme states. Unlike previously reported methodologies, SVMs are able to extract the dynamics using only a few past observed data points (Support Vectors, SV) out of the training examples. Considering statistical measures, the prediction model based on SVM demonstrated encouraging and promising results in a short-term prediction. Thus, the SVM method presented in this study suggests a competitive methodology for the forecast of hydrologic time series.

A Study on Rational Design and Construction of High-Tension-Bolt Friction Joints (고장력볼트 마찰이음의 합리적 설계 및 시공에 관한 연구)

  • Lee, Seung Yong;Kyung, Kab Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.513-521
    • /
    • 2006
  • Many studies have been conducted on the high tension bolt friction connection in the view of the field practice. Those effort, however, unfortunately have not been appropriately applied in the design specifications. Recently, particularly for steel bridges, rationalization of design takes greater attention from designers and hence, demand on rationalization of high tension connection becomes more significant. The purpose of this study is to suggest direction for the rationalization of high tension bolt connection and to also provide fundamental information for the improvement of the design specifications. In order to accomplish the purposes, the design specifications in Korea was analyzed and compared with other specification from abroad, and was studied one of the most important factors including slip coefficient, and the specifications on the size of bolt holes. The effect of over-sized bolt hole and the reduction of axial force on bolt was evaluated through the experimental studies on the slippage of the high tension bolt connections. Other research topics included herein includes the difference of slip coefficients, the effect of over-sized bolt holes and the gap distance of members, and the application of filler plate and corrosion protected bolts. From the research results, it is known that the specifications in Korea apply a constant slip coefficient with respect to the contacted surface conditions while various coefficients are available depending on the contacted surface conditions. Therefore, it is recommended that the specifications in Korea also develop and detail the slip coefficient which can appropriately take account of the variation of the contacted surface conditions. It is also suggested that the limitation abroad on the over-sized bolt hole may be applied for enhancing the effectiveness of construction.

Life-Cycle Cost Effective Optimal Seismic Retrofit and Maintenance Strategy of Bridge Structures - (II) Methodology for Life-Cycle Cost Analysis (교량의 생애주기비용 효율적인 최적 내진보강과 유지관리전략 - (II) 생애주기비용해석 방법론)

  • Lee, Kwang-Min;Cho, Hyo-Nam;Chung, Jee-Seung;An, Hyoung-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.977-988
    • /
    • 2006
  • The goal of this study is to develop a realistic methodology for determination of the Life-Cycle Cost (LCC)-effective optimal seismic retrofit and maintenance strategy of deteriorating bridges. The proposed methodology is based on the concept of minimum LCC which is expressed as the sum of present value of seismic retrofit costs, expected maintenance costs, and expected economic losses with the constraints such as design requirements and acceptable risk of death. The proposed methodology is applied to the LCC-effective optimal seismic retrofit and maintenance strategy of a steel bridge considered as a example bridge in the accompanying study, and various conditions such as corrosion environments and Average Daily Traffic Volumes (ADTVs) are considered to investigate the effects on total expected LCC. In addition, to verify the validity of the developed methodology, the results are compared with the existing methodology. From the numerical investigation, it may be positively expected that the proposed methodology can be effectively utilized as a practical tool for the decision-making of LCC-effective optimal seismic retrofit and maintenance strategy of deteriorating bridges.

The study of Application of Drought Index Using Measured Soil Moisture at KoFlux Tower (KoFlux 타워에서 관측된 토양수분 값을 이용한 가뭄지수 활용에 관한 연구)

  • Kim, Sooyoung;Jo, Hwan Bum;Lee, Seung Oh;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.541-549
    • /
    • 2010
  • While the number of rainy days is decreasing, the mean annual precipitation is increasing due to abnormal climate changes caused by the global warming in Korea. Owing to the biased-concentration of rainfall during specific short terms, not only flood but also drought becomes more and more serious. From the literature, it is easily found that previous studies about flood have been intensively conducted. However, previous studies about drought have been performed rarely. This study conducted the comparison between two representative drought indexes calculated from soil moisture and precipitation. Study area was Haenam-gun, Jeollanam-do in Korea. Soil Moisture Index(SMI) was calculated from soil moisture data while the Standardized Precipitation Index(SPI) and the Palmer Drought Severity Index(PDSI) were calculated from meteorological data. All monthly data utilized in this study were observed at the KoFlux Tower. After the comparative analysis, three indexes showed similar tendency. Therefore, it is thought that the drought index using soil moisture measured at the KoFlux Tower is reasonable, which is because the soil moisture is immediately affected by all the meteorological factors.

An Occupancy based O/D Data Construction Methodology for Expressway Network (고속도로를 대상으로 한 재차인원별 O/D 구축방법론 연구)

  • Choi, Keechoo;Lee, Jungwoo;Yi, Yongju;Baek, Seungkirl
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6D
    • /
    • pp.569-575
    • /
    • 2010
  • The occupancy based O/D is essential for measuring efficiency of various transportation policies like HOV/HOT lane, ramp metering, and public parking station. There has been many studies on occupancy survey methodology and O/D estimation using TCS (Toll Collection System) data separately. The occupancy O/D estimation methodology using TCS data has not been attempted thus far. An overall process from data collection stage to the occupancy O/D estimation stage has been suggested. Field survey was performed at the northbound Seoul toll station of Gyeongbu Expressway by each 2 hours of AM peak, PM non-peak, PM peak, midnight periods on a day. The process of matching the TCS data and field survey data classified by tollbooth ID, car type/mode, and arrival time was also performed. One typical output of the results showed that the ratio of single occupancy vehicles bounding for Seoul during the AM peak amounted to 60%. With the key output of this study and the specific O/D estimation methodology suggested, the whole centroid-to-centroid occupancy O/D of the country could be available, and then various applications in which the occupancy information is required could be possible.

A Study on the Performance Analysis of the High Pressure - Intermediate Pressure Steam Turbine Model for Co-generation Plants using Commercial Programs (상용 프로그램을 이용한 열병합 발전용 고압(HP)-중압(IP) 증기터빈 모델의 성능해석에 대한 연구)

  • Jong Pil Won;Seung Tae Oh;Jungmo Oh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.395-406
    • /
    • 2023
  • The first technological advance to improve the output and efficiency of the latest steam turbines operating in co-generation plants in Korea can be said to be progress in the field of materials that can use high-temperature, high-pressures steam. As a result of design efforts to improve the internal efficiency of steam turbines along with the development of materials, only a few manufacturers of steam turbine have produced high efficiency steam turbines. The internal efficiency of a steam turbine on the steam path operating for a long period of time is gradually lost owing to the limit of mechanical life, and efficiency and output decrease. Therefore, this study aims to develop a model that can analyze the steam flow path performance of HP (High Pressure) and IP (Intermediate Pressure) steam turbine for a co-generation plant using a commercial program and propose a performance calculation method. Owing to the complex performance calculation method of steam turbines, major variables are presented to serve as practically useful references for steam turbine practitioners. In addition, the thermal dynamic analysis(such as heat balance diagram calculation) and the the thermal dynamic calculation required for steam turbine performance calculation and the suitability of the steam turbine performance calculation results were compared with the performance test results.