• Title/Summary/Keyword: 공진형 센서

Search Result 89, Processing Time 0.027 seconds

Proposition of a Vibration Based Acceleration Sensor for the Fully Implantable Hearing Aid (완전 이식형 보청기를 위한 진동 기반의 가속도 센서 제안)

  • Shin, Dong Ho;Mun, H.J.;Seong, Ki Woong;Cho, Jin-Ho
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.2
    • /
    • pp.133-141
    • /
    • 2017
  • The hybrid acoustic sensor for implantable hearing aid has the structure in which a sound pressure based acoustic sensor (ECM) and a vibration based acceleration sensor are combined. This sensor combines the low frequency sensitivity of an acoustic sensor with the high frequency sensitivity of an acceleration sensor, allowing the acquisition of a wide range of sound from low to high frequency. In this paper, an acceleration sensor for use in a hybrid acoustic sensor has been proposed. The acceleration sensor captures the vibration of the tympanic membrane generated by the acoustic signal. The size of the proposed acceleration sensor was determined to diameter of 3.2 mm considering the anatomical structure of the tympanic membrane and the standard of ECM. In order to make the hybrid acoustic sensor have high sensitivity and wide bandwidth characteristics, the aim of the resonance frequency of the acceleration sensor is to be generated at about 3.5 kHz. The membrane of the acceleration sensor derives geometric structure through mathematical model and finite element analysis. Based on the analysis results, the membrane was implemented through a chemical etching process. In order to verify the frequency characteristics of the implemented membrane, vibration measurement experiment using external force was performed. The experiment results showed mechanical resonance of the membrane occurred at 3.4 kHz. Therefore, it is considered that the proposed acceleration sensor can be utilized for a hybrid acoustic sensor.

Implantable Flexible Sensor for Telemetrical Real-Time Blood Pressure Monitoring using Polymer/Metal Multilayer Processing Technique (폴리머/ 금속 다층 공정 기술을 이용한 실시간 혈압 모니터링을 위한 유연한 생체 삽입형 센서)

  • Lim Chang-Hyun;Kim Yong-Jun;Yoon Young-Ro;Yoon Hyoung-Ro;Shin Tae-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.599-604
    • /
    • 2004
  • Implantable flexible sensor using polymer/metal multilayer processing technique for telemetrical real-time blood pressure monitoring is presented. The realized sensor is mechanically flexible, which can be less invasively implanted and attached on the outside of blood vessel to monitor the variation of blood pressure. Therefore, unlike conventional detecting methods which install sensor on the inside of vessel, the suggested monitoring method can monitor the relative blood pressure without injuring blood vessel. The major factor of sudden death of adults is a disease of artery like angina pectoris and myocardial infarction. A disease of circulatory system resulted from vessel occlusion by plaque can be preventable and treatable early through continuous blood pressure monitoring. The procedure of suggested new method for monitoring variation of blood pressure is as follows. First, integrated sensor is attached to the outer wall of blood vessel. Second, it detects mechanical contraction and expansion of blood vessel. And then, reader antenna recognizes it using telemetrical method as the relative variation of blood pressure. There are not any active devices in the sensor system; therefore, the transmission of energy and signal depends on the principle of mutual inductance between internal antenna of LC resonator and external antenna of reader. To confirm the feasibility of the sensing mechanism, in vitro experiment using silicone rubber tubing and blood is practiced. First of all, pressure is applied to the silicone tubing which is filled by blood. Then the shift of resonant frequency with the change of applied pressure is measured. The frequency of 2.4 MHz is varied while the applied pressure is changed from 0 to 213.3 kPa. Therefore, the sensitivity of implantable blood pressure is 11.25 kHz/kPa.

Frequency and Amplitude Control of Micro Resonant Sensors (마이크로 공진형 센서의 주파수 및 진폭 제어)

  • Park, Sung-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.258-264
    • /
    • 2009
  • This paper presents two control algorithms for the frequency and amplitude of the resonator of a micro sensor. One algorithm excites the resonator at its a priori unknown resonant frequency, and the other algorithm alters the resonator dynamics to place the resonant frequency at a fixed frequency, chosen by the designer. Both algorithms maintain a specified amplitude of oscillations. The control system behavior is analyzed using an averaging method, and a quantitative criterion is provided for the selecting the control gain to achieve stability. Tracking and estimation accuracy of the natural frequency under the presence of measurement noise is also analyzed. The proposed control algorithms are applied to the MEMS dual-mass gyroscope without mechanical connecting beam between two proof-masses. Simulation results show the effectiveness of the proposed control algorithms which guarantee the proof-masses of the gyroscope to move in opposite directions with the same resonant frequency and oscillation amplitude.

Development and Characterization of High-Performance Acoustic Emission Sensors (음향방출 신호의 검출을 위한 공진형 및 광대역 센서 제작과 특성평가)

  • Kim, B.G.;Kim, Y.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.4
    • /
    • pp.9-17
    • /
    • 1993
  • Three types of piezoelectric sensors to detect acoustic emission signals were developed and characterized. Epicentral displacement and velocity of a plate to have infinite boundary were calculated by convolution between a Green's function and a simulated source time function to show parabolic rising characteristic. The sensor calibration system set up was composed of a steel plate, a glass capillary, an indentor and a load cell indicator The transient elastic signals were detected by the sensors. The results were compared with the theoretical results and Fast Fourier Transformed. As the results, the sensor fabricated using a disk shape of a piezoelectric PZT element showed resonant characteristics. The sensors fabricated using a conical shape PZT element and a PVDF polymer film showed the wide band characteristics for particle displacement and velocity, respectively. The calculated results showed good agreements with the transient responses in the cases of the wide band sensors and it was confirmed that the simulated source time function had been properly assumed.

  • PDF

CNG 연료탱크의 내압상승시 발생하는 음향방출 변수들의 분포

  • Ji, Hyeon-Seop;Lee, Jong-O;Ju, No-Hoe;Lee, Jong-Gyu;So, Cheol-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.50.2-50.2
    • /
    • 2011
  • 자동차용 CNG 연료탱크의 복합재료 중앙부 표면에 150 kHz 공진형 음향방출센서를 부착하고, 물을 매질로 하여 용기의 내압을 단계적으로 상승시켜 가면서 각 단계에서 일정시간 압력을 유지시키고 그 때 발생하는 음향방출신호를 획득하였다. 이 때 획득한 음향방출신호의 amplitude, count, duration 및 risetime 등과 같은 음향방출 변수들의 분포를 살펴본 결과 복합재료 압력용기의 손상메커니즘을 추정하고 손상정도를 평가하는데 유용하였다.

  • PDF

Theoretical investigation of vibrational characteristics of a multi-layered piezoelectric element for ultrasonic transducers (초음파 탐촉자용 다층 압전접합체의 진동특성에 관한 이론적 해석)

  • Jang Hwan Soo;Roh Yongrae
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.383-386
    • /
    • 1999
  • 본 연구에서는 공중용 초음파 센서에 많이 사용되고 있는 원판형 압전소자, 정합층, 그리고 후면충, 세 부분으로 이루어진 다층 접합체의 진동 특성을 기계적 진동 방정식을 이용하여 이론적으로 해석하였으며, 해석결과의 타당성을 유한요소 해석방법을 사용하여 검증하였다. 본 연구의 해석 방법은 다층 판, 특히 압전세라믹과 정합층으로 이루어진 2층과 후면층이 추가된 3층에 대한 진동 방정식에 적절한 경계 조건 및 수렴조건을 적용하여 고유진동 주파수를 유도하였다. 그리고 이를 이용하여 초음파 탐측자 개발 시 널리 사용되고 있는 설계변수 즉, 각 층의 반경, 두께, 밀도, 그리고 영률의 변화에 대한 공진주파수의 변화 경향을 분석하였다. 공진주파수 변화 경향에 대한 이 해석 방법의 타당성을 널리 사용되고 있는 유한 요소해석법을 사용하여 검증한 결과, 두 해석결과는 좋은 일치를 보였다. 그러므로 본 연구의 결과는 종래의 등가회로나 유한요소 해석법에 비해 더 간편하고, 더 정확한 해석결과를 제공할 수 있는 해석도구로써 이용될 수 있을 것이다.

  • PDF

Study on Correlation with Receiving Coil and Transmitting Coil for Wireless Power Transfer at Iron Spindle (철제 스핀들에서 무선전력전송을 위한 송전기와 수전기의 상관관계 연구)

  • Lee, GiBum;Ahn, Geontae;Choi, KangHyouk
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.18-19
    • /
    • 2015
  • 본 논문에서는 회전체에 붙어있는 센서에 전원을 공급하기 위하여 전자기 공진형 무선전력전송을 사용하고 있다. 회전체는 철제 스핀들로 만들어 졌으며, 스핀들 표면에 수전기를 부착하여 무선전력을 수전하고 있다. 송전기에 무선전력을 송전하고 수전기에서 전력을 수전하고자 할 때, 철제 스핀들 때문에 전력 전달효율이 감소된다. 따라서 최적의 전력전달 조건을 찾아 송전기와 수전기의 위치 및 크기를 설계하여야 한다. 본 논문에서는 송전기의 위치를 변화시키고, 수전기의 각도를 변화시키면서 송 수전기 간의 전력전달 특성을 연구하였다.

  • PDF

Flexible Platinum Thermoresistive Temperature Sensor Applicable to Ultrasonic Resonance Thrombolysis Device for Ischemic Stroke (초음파 공진형 허혈성 뇌졸증 치료기구에의 적용을 위한 유연성 백금저항온도센서)

  • Bang, Yong-Seung;Sim, Tae-Seok;Kim, Sung-Hyun;Kang, Sung-Gwon;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1631-1632
    • /
    • 2006
  • This paper reports on a flexible and biocompatible platinum thermoresistive temperature sensor for the application of an ultrasonic resonance thrombolysis device for ischemic stroke. The proposed flexible platinum temperature sensor consists of a polyimide substrate, a platinum thermoresistive element and a polyimide insulation layer. The temperature coefficient of resistance (TCR) and sensitivity of the designed temperature sensor were measured and calculated to be $2.63{\times}10^{-3}/^{\circ}C$ and $0.93^{\circ}C/sec$, respectively.

  • PDF

Development of a Energy-saving LED module Using K-band Microwave Motion Detecting Sensor (K대역 마이크로파 움직임 감지 센서를 이용한 에너지 절감형 LED 모듈 개발)

  • Kim, Howoon;Woo, Dong Sik
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.446-452
    • /
    • 2020
  • In this paper, we propose a energy-saving LED module using K-band microwave motion detecting sensor. To oscillate K-band microwave signal, An oscillator using a hairpin-type microstrip resonator was designed to increase stability and make fabrication easier. To radiate the microwave signal, a two-channel(TX/RX) patch antenna arrays was developed. Wilkinson power divider and ring hybrid mixer were developed and applied to obtain Doppler shift from the received signal. Shield cans were installed to protect the stability of the signals and unwanted external noise. The proposed motion detection sensor was mounted on a demonstration LED module and the energy saving performance through pre-test was verified.

Design and Fabrication of A Doppler Radar for Motion Detector Using Frequency Tunable Hairpin Resonator (주파수 가변형 헤어핀공진기를 이용한 동작감지용 도플러 레이더센서의 제작 및 설계)

  • Kim, Eun-Su;Kim, Gue-Chol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.931-936
    • /
    • 2018
  • We designed an x-band radar for motion detector using a frequency tunable hairpin ring resonator. The proposed doppler radar sensor can vary the oscillation frequency by applying a hairpin resonator using a varactor diode to the oscillator, and this can also reduce the size by transmitting and receiving a signal from Tx/Rx dual antenna. The fabricated doppler radar sensor was fabricated in $30{\times}24mm$, and it was confirmed that the pulse width difference occurred according to the distance from the object. The measurement results showed oscillation at 10.525GHz. We confirmed that it is enough to use as radar for motion detection from the measured results.