• Title/Summary/Keyword: 공압 gripper

Search Result 6, Processing Time 0.023 seconds

Development of Offshore Construction ROV System applying Pneumatic Gripper (공압 gripper를 적용한 해양 건설 ROV 시스템 개발)

  • Park, Jihyun;Hwang, Yoseop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1697-1705
    • /
    • 2022
  • The safety of marine construction workers and marine pollution problems are occurring due to large-scale offshore construction. In particular, underwater construction work in the sea has a higher risk than other work, so it is necessary to apply an unmanned alternative system that considers the safety of the workers. In this paper, the ROV system for offshore construction has been developed for underwater unmanned work. A monitoring system was developed for position control through the control of underwater propellants, pneumatic gripper, and monitoring of underwater work. As a result of the performance evaluation, the underwater movement speed of the ROV was evaluated to be 0.89 m/s, and it was confirmed that the maximum load of the pneumatic gripper was 80 kg. In addition, the network bandwidth required for underwater ROV control and underwater video streaming was evaluated to be more than 300Mbps, wired communication at 92.7 ~ 95.0Mbit/s at 205m, and wireless communication at 78.3 ~ 84.8Mbit/s.

A Gripping System Capable of Simultaneous Implementation of Pneumatic Gripper and Vacuum Gripper Using a Single Pump (단일 펌프를 이용하여 공압 그리퍼와 진공 그리퍼의 동시 구현이 가능한 그리핑 시스템의 개발)

  • Tae Hwa Hong;Jae-Bok Song
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.456-462
    • /
    • 2023
  • In recent years, the use of robot arms has increased rapidly in both industrial and service applications. Unlike production sites, where only one type of gripper is used for productivity, service sites often use a tool changer to replace fingered grippers or vacuum grippers to cover various objects to be grasped. To this end, a tool changer-based pneumatic grasping system was developed in this study. In order to simultaneously use a positive pressure-based pneumatic gripper and a negative pressure-based vacuum gripper, a small vane pump capable of generating positive and negative pressures depending on the direction of rotation was developed. Experiments with actual prototypes have shown that the pneumatic system based on the developed vane pump can effectively realize both pneumatic grippers and vacuum grippers.

Design of the Air Pressure Pick-up Head for Non-Contact Wafer Gripper (비접촉식 웨이퍼 그리퍼용 공압 파지식 헤드 설계)

  • Kim, Joon-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.401-407
    • /
    • 2012
  • The recent manufacturing process in the thin wafers and flat panel necessitate new approaches to reduce handling fragile and surface-sensitive damage of components. This paper presents a new pneumatic levitation for non-contact handling of parts and substrates. This levitation can achieve non-contact handling by blowing air into an air pressure pick-up head with radial passages to generate a negative pressure region. Negative pressure is caused by the radial air flow by nozzle throat and through holes connecting to the bottom region. The numerical analysis deals with the levitational motion with different design factors. The dynamic motion is examined in terms of force balance(dynamic equilibrium) occurring to the flow field between two objects. The stable equilibrium position and the safe separation distance are determined by analyzing the local pressure distribution in the fluid motion. They make considerable design factors consisting the air pressure pick-up head. As a result, in case that the safe separation distance is beyond 0.7mm, the proposed pick-up head can levitate stably at the equilibrium position. Furthermore, it can provide little effect of torque, and obtain more wide picking region according to the head size.

Study on Through Paths Inside the Air Pressure Pick-Up Head for Non-Contact Gripper (비접촉식 그리퍼 적용을 위한 공기압 파지식 헤드 내부 관통로 고찰)

  • Kim, Joon-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.563-569
    • /
    • 2012
  • In the semiconductor and display device production processes, the handling of sensitive objects needs new carrying technology. Floating carrying motion is a practical alternative solution for non-contact handling of parts and substrates. This paper presents a study of through paths inside the air pressure pick-up head to generate the floating motion. The air motion by conceptual designed paths inside the head gradually develops positive pressure and vacuum between narrow objects. Positive pressure occurs through the head tip before discharging outside of the head. Negative pressure is developed by evacuating the inside head bottom as result of the radial flow connecting the vertical through-holes. The numerical analysis was done to figure out the stable levitation caused by the two acting forces between surfaces. In comparing with the standard case that the levitation gap gets 0.7-0.9 mm, it confirms the suggested head characteristics to show floating capacity in accordance with the head size, number of through-hole, and locations of through-hole in succession of conceptual design for a prototype.

Fabrication and Characteristics of In-Plane Type Micro Piezoelectric Micro Grippers with Pneumatic Lines for Biological Cells and Micro Parts Handling (바이오 셀 및 마이크로 부품 handling을 위한 pneumatic line을 갖는 in-plane 형 마이크로 압전 그리퍼 제조 및 특성)

  • Park J.S.;Park K.B.;Shin K.S;Moon C.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.501-502
    • /
    • 2006
  • In-plane type micro piezoelectric micro grippers with pneumatic lines for manipulation biological cells and micro parts were designed, fabricated, and characterized. Micro grippers were fabricated through the final micro-sanding process after wafer level bonding between the etched 4' Si wafer with pneumatic channels and 4' glass wafer. Displacements between two jaws of fabricated micro grippers were linearly increased with applying voltages to piezoelectric actuator. In the case of applying 80 V, the displacement between two jaws was $160{\mu}m$. Using fabricated micro grippers, manipulation tests for biological cell and micro parts with the sizes less than $100{\mu}m$ are in process.

  • PDF