• Title/Summary/Keyword: 공아

Search Result 164,717, Processing Time 0.153 seconds

A Comparative Study of Vegetation Phenology Using High-resolution Sentinel-2 Imagery and Topographically Corrected Vegetation Index (고해상도 Sentinel-2 위성 자료와 지형효과를 고려한 식생지수 기반의 산림 식생 생장패턴 비교)

  • Seungheon Yoo;Sungchan Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.2
    • /
    • pp.89-102
    • /
    • 2024
  • Land Surface Phenology (LSP) plays a crucial role in understanding vegetation dynamics. The near-infrared reflectance of vegetation (NIRv) has been increasingly adopted in LSP studies, being recognized as a robust proxy for gross primary production (GPP). However, NIR v is sensitive to the terrain effects in mountainous areas due to artifacts in NIR reflectance cannot be canceled out. Because of this, estimating phenological metrics in mountainous regions have a substantial uncertainty, especially in the end of season (EOS). The topographically corrected NIRv (TCNIRv) employs the path length correction (PLC) method, which was deduced from the simplification of the radiative transfer equation, to alleviate limitations related to the terrain effects. TCNIRv has been demonstrated to estimate phenology metrics more accurately than NIRv, especially exhibiting improved estimation of EOS. As the topographic effect is significantly influenced by terrain properties such as slope and aspect, our study compared phenology metrics estimations between south-facing slopes (SFS) and north-facing slopes (NFS) using NIRv and TCNIRv in two distinct mountainous regions: Gwangneung Forest (GF) and Odaesan National Park (ONP), representing relatively flat and rugged areas, respectively. The results indicated that TCNIR v-derived EOS at NFS occurred later than that at SFS for both study sites (GF : DOY 266.8/268.3 at SFS/NFS; ONP : DOY 262.0/264.8 at SFS/NFS), in contrast to the results obtained with NIRv (GF : DOY 270.3/265.5 at SFS/NFS; ONP : DOY 265.0/261.8 at SFS/NFS). Additionally, the gap between SFS and NFS diminished after topographic correction (GF : DOY 270.3/265.5 at SFS/NFS; ONP : DOY 265.0/261.8 at SFS/NFS). We conclude that TCNIRv exhibits discrepancy with NIR v in EOS detection considering slope orientation. Our findings underscore the necessity of topographic correction in estimating photosynthetic phenology, considering slope orientation, especially in diverse terrain conditions.

Toxicity study of cadmium and copper on riparian collembolan species Yuukianura szeptyckii (Neanuridae) (수변 서식 톡토기 Yuukianura szeptyckii (Neanuridae)에 대한 카드뮴과 구리 독성 연구)

  • Hagyeong Kim;Jimin Shin;Dohyeon Jeong;Juyeong Jeong;Yongeun Kim;June Wee;Kijong Cho;Yun-Sik Lee
    • Korean Journal of Environmental Biology
    • /
    • v.42 no.1
    • /
    • pp.54-61
    • /
    • 2024
  • The ecosystem provides a diverse array of environmental conditions for organisms, and only those that are capable of successfully adapting to these conditions within their habitats can endure, thrive, and proliferate. Further, the environmental conditions within these habitats can significantly affect the bioavailability of chemicals that are introduced therein, thus resulting in varied adverse impacts on the organisms. The present study aims to evaluate the sensitivity of Yuukianura szeptyckii - a species adapted to riparian - to heavy metals following ISO guideline 11276, with the objective of assessing its potential as an indicator species for ecotoxicological evaluations in riparian habitats. The findings revealed that cadmium and copper both had significant toxic effects depending on their concentrations. For cadmium, the LC50 was 280 mg kg-1, EC50 was 66 mg kg-1, and NOEC and LOEC were 25 and 50 mg kg-1, respectively. For copper, the LC50 was 911 mg kg-1, EC50 was 151 mg kg-1, and LOEC was 50 mg kg-1. Comparative analysis with previous results for the international standard species Folsomia candida and the domestic standard species Allonychiurus kimi indicated that Y. szeptyckii exhibited even greater sensitivity to toxicity values. The adverse effects on survival and reproduction were closely associated with the influx concentration of heavy metals in their bodies. Altogether, the results suggest that Y. szeptyckii is a sensitive species for ecotoxicological assessments in riparian habitats, thus making it suitable as an indicator species, particularly in riparian ecosystems that are characterized by relatively high humidity conditions.

Physiochemical properties and anti-proliferative activity against human lung cancer cells of kombucha using sugar extracts of Cudrania tricuspidata fruits (꾸지뽕나무 열매 당침액 이용 콤부차의 이화학적 품질 특성 및 인체 폐암세포 항증식 활성)

  • MiAe Cho;Kyoung Ju Song;Jinwook Lee;Chang Moo Lee;Ho Chil Choi;Jong Cheol Park
    • Food Science and Preservation
    • /
    • v.31 no.4
    • /
    • pp.673-681
    • /
    • 2024
  • This study was conducted to develop kombucha with better functionality. The developed kombucha (CK) was prepared using the sugar extracts from fruits of Cudrania tricuspidata (Carrière) Bureau ex Lavallée instead of the sugar, which is used as a substrate for SCOBY in conventional kombucha (K). During fermentation, the soluble solids content significantly decreased in CK compared to K, and the pH change decreased rapidly in CK compared to K. On the 14th day of fermentation, the weight of the SCOBY in CK was higher than that in K. Immediately after preparation, K contained only sucrose, but CK contained sucrose, glucose, and fructose. SCOBY appears to use glucose and fructose preferentially during fermentation. K contained acetic acid and citric acid right after preparation. However, as fermentation progressed, the composition changed to acetic acid, citric acid, and lactic acid. At the same time, CK initially consisted of citric acid, lactic acid, and acetic acid. However, acetic acid and citric acid increased but lactic acid decreased significantly on the 14th day of fermentation. In the cytotoxicity studies, the CK showed a proliferation-promoting effect on normal lung cells (MRC-5) and strong cytotoxicity against human lung cancer cells (A549). These results suggest that the kombucha made from sugar extracts of C. tricuspidata fruits can be used as a more functional beverage than regular kombucha.

Deep Learning-based Fracture Mode Determination in Composite Laminates (복합 적층판의 딥러닝 기반 파괴 모드 결정)

  • Muhammad Muzammil Azad;Atta Ur Rehman Shah;M.N. Prabhakar;Heung Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.225-232
    • /
    • 2024
  • This study focuses on the determination of the fracture mode in composite laminates using deep learning. With the increase in the use of laminated composites in numerous engineering applications, the insurance of their integrity and performance is of paramount importance. However, owing to the complex nature of these materials, the identification of fracture modes is often a tedious and time-consuming task that requires critical domain knowledge. Therefore, to alleviate these issues, this study aims to utilize modern artificial intelligence technology to automate the fractographic analysis of laminated composites. To accomplish this goal, scanning electron microscopy (SEM) images of fractured tensile test specimens are obtained from laminated composites to showcase various fracture modes. These SEM images are then categorized based on numerous fracture modes, including fiber breakage, fiber pull-out, mix-mode fracture, matrix brittle fracture, and matrix ductile fracture. Next, the collective data for all classes are divided into train, test, and validation datasets. Two state-of-the-art, deep learning-based pre-trained models, namely, DenseNet and GoogleNet, are trained to learn the discriminative features for each fracture mode. The DenseNet models shows training and testing accuracies of 94.01% and 75.49%, respectively, whereas those of the GoogleNet model are 84.55% and 54.48%, respectively. The trained deep learning models are then validated on unseen validation datasets. This validation demonstrates that the DenseNet model, owing to its deeper architecture, can extract high-quality features, resulting in 84.44% validation accuracy. This value is 36.84% higher than that of the GoogleNet model. Hence, these results affirm that the DenseNet model is effective in performing fractographic analyses of laminated composites by predicting fracture modes with high precision.

A Flora of Vascular Plants in Biryongsan Mt. and Baebawhisan Mt. (Gyeongsangbuk-do) (비룡산과 배바위산 일대(경상북도)의 관속식물상)

  • Ho Yeon Kang;Seon Jeong;Jae Young Kim;Hyeong Jun Jo;Gyu Young Chung
    • Korean Journal of Plant Resources
    • /
    • v.37 no.4
    • /
    • pp.360-385
    • /
    • 2024
  • This study was carried out to clarify the distribution of vascular plants in Biryongsan Mt. (1,129 m) and Baebawhisan Mt. (967 m) (a.s.l., 36° 55'~37° 06' N, 129° 03'~29° 09' E), Gyeongsangbuk-do. The surveys were conducted 13 times from April 2019 to August 2022. The vascular plants of Biryongsan Mt. and Baebawhisan Mt. was consisted a total of 570 taxa based on the voucher specimens; 108 families, 334 genera, 506 species, 17 subspecies, 44 varieties, 3 forms. Among them, the Korean endemic plants were 12 taxa. The of number of threatened and near threatened plants, as National Red List of Vascular Plants in Korea designated by the Korean National Arboretum, were 8 taxa, comprising 1 endangered (EN), 3 vulnerable (VU), and 4 near threatened (LC) species. The number of floristic target plants designated by the Ministry of Environment was 104 taxa, including 10 of level IV and 28 of level III. The naturalized plants in this area were 42 taxa. Among 570 taxa, there were 403 edible plants, 461 medicinal plants, 221 industrial plants, 306 ornamental plants, and 17 taxa with unknown usefulness respectively.

Effect of Root Zone Volume on Productivity of Shoots in Multi-layer Cultivation of Rosemary (로즈마리 다단재배 시 근권부 용적이 어린순 생산성에 미치는 영향)

  • Myeong Suk Kim;Jung Seob Moon;Song Hee Ahn;Dong Chun Cheong;Min Sil Ahn;So Ra Choi
    • Journal of Bio-Environment Control
    • /
    • v.33 no.3
    • /
    • pp.156-162
    • /
    • 2024
  • This study was conducted to investigate the effect of rooting volume on the productivity of fresh shoots when growing rosemary in multi-layer cultivation. The 10 cm middle cuttings from which the common rosemary (Rosmarinus officinalis L.) apical bud was removed were planted in a 128-hole tray, rooted, and then transplanted into pots of 125, 200, 550, 750, 1,300, and 2,000 mL to determine the growth characteristics and quantity of young shoots of 1-year-old and 2-year-old rosemary. In the case of 1-year-old rosemary, there was no clear difference in initial growth (30 days after transplanting) between treatments in pot size larger than 550 mL, in the case of 2-year-old rosemary, growth tend to be proportional as the pot became larger. The fresh weight of the underground part of 1-year-old and 2-year-old rosemary was the lowest at 6.9 g and 24.4 g, respectively, when surveyed on July 25 in a 550 mL container, and 10.3 g and 24.9 g, respectively, when surveyed on November 24, and there was a difference between treatments in containers of 750 to 2,000 mL. On the other hand, in the case of 1-year-old rosemary, the fresh weight of the above-ground part increased as the pot became larger, but there was no statistical difference above 1,300 mL, and the fresh weight of 2-year-old rosemary was also significantly higher as the pot became larger. The quality of young shoots was the best for 1-year-old rosemary in a pot of 2,000 mL, but for 2-year-old rosemary, there was a difference in quality depending on the season. Shoot productivity per unit pot was highest at 1,300 mL, but when converted to per unit area, the best was observed at 750 mL. Therefore, the most suitable pot size for intensive production through multi-layer cultivation of rosemary young shoots is judged to be 750 mL (12.5 × 11.5 cm).

Productivity Evaluation of Rosemary Shoots using Artificial Light Sources in Multi-layer Cultivation (다단재배에서 인공광원을 이용한 로즈마리 어린순의 생산성 평가)

  • Myeong Suk Kim;Jung Seob Moon;Song Hee Ahn;Dong Chun Cheong;Min Sil Ahn;So Ra Choi
    • Journal of Bio-Environment Control
    • /
    • v.33 no.3
    • /
    • pp.163-171
    • /
    • 2024
  • This study was aimed to investigate the effects of layer-by-floor environmental conditions and lower shelf supplemental lighting on the productivity of fresh shoots when growing rosemary in multi-layer cultivation. The 10-cm cuttings from stock plants of common rosemary (Rosemarinus officinalis) were planted in a 128-hole tray, rooted, and then transplanted into pots of 750, 1,300, and 2,000 mL. Afterwards, they were placed on multi-layer shelves (width × length × height: 149 × 60 × 57 cm, 3-layer) in a two-linked greenhouse and cultivated using the sub-irrigation. The productivity of young shoots by layer of the multi-layer shelf was the highest on the third floor (top floor), but productivity decreased sharply after September due to stem lignification caused by excessive light during the summer. Conversely, the lower two layers exhibited faster growth rate of young shoots until the late cultivation period, but the quality decreased due to stem softening and leaf epinasty. To address the excessive light problem on the third floor during the summer, shading was implemented at 30% opacity in July and August, resulting in a 210% increase in rosemary young shoots count and a 162% increase in fresh weight per unit area compared to the unshaded control. To improve the lighting deficiency on the lower layer, supplemental lighting with LED at 30 W increased rosemary young shoot harvest by 168% from June to September compared to no supplemental lighting, but it decreased productivity after September. Therefore, when growing rosemary in multi-layer, it is judged that intensive production of young shoots is possible if the third floor (top layer) is shaded with 30% of light from July to August to prevent stem lignification, and the lower layer is temporarily supplemented with LED 30 W from June to September to increase young shoot growth.

Comparison and Analysis of Field Hydraulic Tests to Evaluate Hydraulic Characteristics in Deep Granite Rockmass (심부 화강암반의 수리특성 평가를 위한 현장수리시험 비교 및 해석 연구)

  • Dae-Sung Cheon;Heejun Suk;Seong Kon Lee;Tae-Hee Kim;Ki Seog Kim;Seong-Chun Jun;SeongHo Bae
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.393-412
    • /
    • 2024
  • In selecting a disposal site for high-level radioactive waste, the hydrogeological research of the site is very important, and the hydraulic conductivity and the storage coefficient are key parameters. In this study, the hydraulic conductivity obtained by two different types of field hydraulic test equipment and methods was compared and analyzed for the deep granite rockmass in the Wonju area to understand the hydraulic characteristics of the deep granite rockmass. One was to perform the lugeon test, constant pressure injection test, and slug test at a maximum depth of 602.0 m by using the auto pressure/flow injection system, and the calculated hydraulic conductivity ranged from 1.26E-9 to 4.16E-8 m/s. In the overall depth, the maximum and minimum differences of the hydraulic conductivity were found to be about 33 times, and in the same test section, the difference by test method or analysis method was 1.13 to 8.25 times. In the other, the hydraulic conductivity calculated by performing a constant pressure injection test and a pulse test at a maximum depth of 705.1 m using the deep borehole hydraulic testing system was found to be 1.60E-10 to 2.05E-8 m/s, and the maximum and minimum differences were found to be about 130 times. In the constant pressure injection test, the difference depending on the analysis method was found to be 1.02 to 2.8 times. The hydraulic conductivity calculated by the two test equipment and methods generally showed similar ranges as E-9 and E-8 m/s, and no clear trend was observed according to depth. It was found that the granite rockmass in the Wonju area where the field hydraulic test was conducted showed low or very low rockmass permeability, and although there are differences in the range of hydraulic conductivity and the depth of application that can be measured depending on the applied test equipment and test method, it is generally believed that reliable results were presented.

Seismic Wave Velocity Characteristics of the Mudeungsan Tuff under the Influence of Freeze-Thaw (동결-융해에 따른 무등산 응회암의 탄성파 속도 특성)

  • Seong-Seung Kang;Jeongdu Noh
    • The Journal of Engineering Geology
    • /
    • v.34 no.3
    • /
    • pp.367-379
    • /
    • 2024
  • We analyzed the changes in the properties of the Mudeungsan tuff by conducting an artificial weathering experiment based on the climatic conditions of Mudeungsan National Park, to evaluate the long-term stability of the columnar jointing in the tuff. The climate of Mudeungsan National Park over 20 years suggests the temperature conditions for freeze-thaw are -20 to 30℃. The change in tuff properties due to weathering were estimated by measuring the elastic wave velocity, which was measured after every 40 freeze-thaw cycles. Based on the origin of the Mudeungsan tuff and fracture distribution in the tuff, the elastic wave velocity in samples from 24 locations was measured at regular intervals in the axial and radial directions. The axial elastic wave velocity of the Mudeungsan tuff is 5,187~5,367 m/s, and the radial elastic wave velocity is 4,001~5,290 m/s. As a result of 200 freeze-thaw cycles, the axial elastic wave velocity decreased by 5.53% for sample MT-1, 4.89% for MT-2, and 5.36% for MT-3. The radial elastic wave velocity decreased by 20.00% for MT-1, 17.02% for MT-2, and 19.84% for MT-3. The decrease in elastic wave velocity due to the freeze-thaw cycles is greater for low values of elastic wave velocity. For the axial elastic wave velocity, the weathering is accelerated after 120 cycles and, for the radial elastic wave velocity, weathering actively progresses from the start of the freeze-thaw cycles. In summary, for a low elastic wave velocity, experimental weathering results in a large decrease in elastic wave velocity. In addition, the Mudeungsan tuff and its columnar joints have a distinct anisotropy.

Characteristics of Pyrophyllite Powder Molding Material by High-Speed, High-Pressure Dynamic Compression Technology (고속고압 동적 압축 기술에 의한 연납석 분말 성형 재료 특성)

  • Jeongdu Noh;Sangyeon Ban;Taeyoon Oh;Jangbok Wi;Seong-Seung Kang
    • The Journal of Engineering Geology
    • /
    • v.34 no.3
    • /
    • pp.403-413
    • /
    • 2024
  • This study aims to investigate the material properties of specimens made from pyrophyllite and pyrophyllite-aluminum mixed powders using high-speed, high-pressure dynamic compression technology. The aluminum powder exhibited a highly uniform particle size distribution ranging from 10 to 100 ㎛, whereas the pyrophyllite powder displayed four distinct particle size distributions: 0.1~1 ㎛, 1~10 ㎛, 80~100 ㎛, and 200~1,000 ㎛. Using high-speed, high-pressure dynamic compression technology with a drop time of approximately 0.34~0.4 seconds and a dynamic load of about 207 tonf, it was possible to fabricate pyrophyllite and pyrophyllite-aluminum mixed powder specimens with a volume of about 548 mm2. The Shore hardness measurement results showed that specimen BG100 had an average of 43.7, BG90 had an average of 33.2, and BG85, BG80, BG75, and BG70 had an average of 31.0, indicating that the specimen with the least aluminum content exhibited the highest Shore hardness value. The thermogravimetric analysis revealed mass losses at two points: the first mass loss occurred at around 270℃ with a loss of approximately 1.45%, and the second mass loss occurred at around 600℃, where BG70 and BG80 showed a mass loss of about 2.53%, and BG75, BG85, and BG90 showed a mass loss of about 3.43%. Scanning electron microscopy analysis indicated that the microstructure of the specimens was similar regardless of the mixing ratio, with three elements-O, Si, and Al-being detected in all specimens. The mapping analysis of BG90 revealed an oxygen weight ratio of 50.80%, silicon weight ratio of 37.36%, and aluminum weight ratio of 11.85%. In the case of BG85, the results were 43.09% oxygen, 43.50% silicon, and 13.41% aluminum; for BG80, the results were 44.83% oxygen, 40.30% silicon, and 14.87% aluminum; for BG75, the results were 44.71% oxygen, 35.49% silicon, and 19.80% aluminum; and for BG70, the results were 34.95% oxygen, 35.73% silicon, and 29.32% aluminum.