• Title/Summary/Keyword: 공아

Search Result 164,717, Processing Time 0.157 seconds

Physical Characterization of Domestic Aggregate (국내 골재의 물리적 특성 분석)

  • Junyoung Ko;Eungyu Park;Junghae Choi;Jong-Tae Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.169-187
    • /
    • 2023
  • Aggregates from 84 cities and counties in Korea were tested for quality to allow analysis of the physical characteristics of aggregates from river, land, and forest environments. River and land aggregates were analyzed for 18 test items, and forest aggregates for 12 test items. They were classified according to watershed and geology, respectively. The observed physical characteristics of the river aggregates by basin were as follows: aggregates from the Geum River basin passed through 2.5, 1.2, 0.6, 0.3, 0.15, and 0.08 mm sieves; clay lumps constituted the Nakdong River basin material; aggregates from the Seomjin River basin passed through 10, 5, and 2.5 mm sieves; those from the Youngsang River basin passed through 1.2, 0.6, 0.3, 0.15, and 0.08 mm sieves; and aggregates from the Han River basin passed through 10, 5, 2.5, 1.2, 0.6, 0.3, and 0.08 mm sieves, Stability; Standard errors were analyzed for the average amount passing through 10, 0.6, and 0.08 mm silver sieves, and performance rate showed different distribution patterns from other physical characteristics. Analysis of variance found that 16 of the 18 items, excluding the absorption rate and the performance rate, had statistically significant differences in their averages by region. Considering land aggregates by basin, those from the Nakdong River basin excluding the Geum River basin had clay lumps, those from the Seomjin River basin had 10 and 5 mm sieve passage, aggregates from the Youngsang River basin had 0.08 mm sieve passage, and those from the Han River basin had 10, 0.6, and 0.08 mm sieve passage. The standard error of the mean of the quantity showed a different distribution pattern from the other physical characteristics. Analysis of variance found a statistically significant difference in the average of all 18 items by region. Analyzing forest aggregates by geology showed distributions of porosity patterns different from those of other physical characteristics in metamorphic rocks (but not igneous rocks), and distributions of wear rate and porosity were different from those of sedimentary rocks. There were statistically significant differences in the average volume mass, water absorption rate, wear rate, and Sc/Rc items by lipid.

An Empirical Study on the Improvement of In Situ Soil Remediation Using Plasma Blasting, Pneumatic Fracturing and Vacuum Suction (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화 개선 효과에 대한 실증연구)

  • Jae-Yong Song;Geun-Chun Lee;Cha-Won Kang;Eun-Sup Kim;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.85-103
    • /
    • 2023
  • The in-situ remediation of a solidified stratum containing a large amount of fine-texture material like clay or organic matter in contaminated soil faces limitations such as increased remediation cost resulting from decreased purification efficiency. Even if the soil conditions are good, remediation generally requires a long time to complete because of non-uniform soil properties and low permeability. This study assessed the remediation effect and evaluated the field applicability of a methodology that combines pneumatic fracturing, vacuum extraction, and plasma blasting (the PPV method) to improve the limitations facing existing underground remediation methods. For comparison, underground remediation was performed over 80 days using the experimental PPV method and chemical oxidation (the control method). The control group showed no decrease in the degree of contamination due to the poor delivery of the soil remediation agent, whereas the PPV method clearly reduced the degree of contamination during the remediation period. Remediation effect, as assessed by the reduction of the highest TPH (Total Petroleum Hydrocarbons) concentration by distance from the injection well, was uncleared in the control group, whereas the PPV method showed a remediation effect of 62.6% within a 1 m radius of the injection well radius, 90.1% within 1.1~2.0 m, and 92.1% within 2.1~3.0 m. When evaluating the remediation efficiency by considering the average rate of TPH concentration reduction by distance from the injection well, the control group was not clear; in contrast, the PPV method showed 53.6% remediation effect within 1 m of the injection well, 82.4% within 1.1~2.0 m, and 68.7% within 2.1~3.0 m. Both ways of considering purification efficiency (based on changes in TPH maximum and average contamination concentration) found the PPV method to increase the remediation effect by 149.0~184.8% compared with the control group; its average increase in remediation effect was ~167%. The time taken to reduce contamination by 80% of the initial concentration was evaluated by deriving a correlation equation through analysis of the TPH concentration: the PPV method could reduce the purification time by 184.4% compared with chemical oxidation. However, the present evaluation of a single site cannot be equally applied to all strata, so additional research is necessary to explore more clearly the proposed method's effect.

Influence of finish line design on the marginal fit of nonprecious metal alloy coping fabricated by 3D printing, milling and casting using CAD-CAM (CAD-CAM을 이용한 3D printing, milling, casting 방법의 비귀금속 코핑의 지대치 변연 적합도 연구)

  • Seo-Rahng Kim;Myung-Joo Kim;Ji-Man Park;Seong-Kyun Kim;Seong-Joo Heo;Jai-Young Koak
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.1
    • /
    • pp.1-17
    • /
    • 2023
  • Purpose. The purpose of this study was to examine the correlation between the finish line designs and the marginal adaptation of nonprecious metal alloy coping produced by different digital manufacturing methods. Materials and methods. Nonprecious metal alloy copings were made respectively from each master model with three different methods; SLS, milling and casting by computer aided design and computer aided manufacturing (CAD-CAM). Twelve copings were made by each method resulting in 72 copings in total. The measurement was conducted at 40 determined reference points along the circumferential margin with the confocal laser scanning microscope at magnification ×150. Results. Mean values of marginal gap of laser sintered copings were 11.8 ± 7.4 ㎛ for deep chamfer margin and 6.3 ± 3.5 ㎛ for rounded shoulder margin and the difference between them was statistically significant (P < .0001). Mean values of marginal gap of casted copings were 18.8 ± 20.2 ㎛ for deep chamfer margin and 33 ± 20.5 ㎛ for rounded shoulder margin and the difference between them was significant (P = .0004). Conclusion. Within the limitation of this study, the following conclusions were drawn. 1. The variation of finish line design influences the marginal adaptation of laser sintered metal coping and casted metal coping. 2. Laser sintered copings with rounded shoulder margin had better marginal fit than deep chamfer margin. 3. Casted copings with deep chamfer margin had better marginal fit than rounded shoulder margin. 4. According to the manufacturing method, SLS system showed the best marginal fit among three different methods. Casting and milling method followed that in order.

A Study on Image-Based Mobile Robot Driving on Ship Deck (선박 갑판에서 이미지 기반 이동로봇 주행에 관한 연구)

  • Seon-Deok Kim;Kyung-Min Park;Seung-Yeol Wang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1216-1221
    • /
    • 2022
  • Ships tend to be larger to increase the efficiency of cargo transportation. Larger ships lead to increased travel time for ship workers, increased work intensity, and reduced work efficiency. Problems such as increased work intensity are reducing the influx of young people into labor, along with the phenomenon of avoidance of high intensity labor by the younger generation. In addition, the rapid aging of the population and decrease in the young labor force aggravate the labor shortage problem in the maritime industry. To overcome this, the maritime industry has recently introduced technologies such as an intelligent production design platform and a smart production operation management system, and a smart autonomous logistics system in one of these technologies. The smart autonomous logistics system is a technology that delivers various goods using intelligent mobile robots, and enables the robot to drive itself by using sensors such as lidar and camera. Therefore, in this paper, it was checked whether the mobile robot could autonomously drive to the stop sign by detecting the passage way of the ship deck. The autonomous driving was performed by detecting the passage way of the ship deck through the camera mounted on the mobile robot based on the data learned through Nvidia's End-to-end learning. The mobile robot was stopped by checking the stop sign using SSD MobileNetV2. The experiment was repeated five times in which the mobile robot autonomously drives to the stop sign without deviation from the ship deck passage way at a distance of about 70m. As a result of the experiment, it was confirmed that the mobile robot was driven without deviation from passage way. If the smart autonomous logistics system to which this result is applied is used in the marine industry, it is thought that the stability, reduction of labor force, and work efficiency will be improved when workers work.

A Study on the Effect of Improving Permeability by Injecting a Soil Remediation Agent in the In-situ Remediation Method Using Plasma Blasting, Pneumatic Fracturing, and Vacuum Suction Method (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화제 주입에 따른 투수성 개선 연구)

  • Geun-Chun Lee;Jae-Yong Song;Cha-Won Kang;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.371-388
    • /
    • 2023
  • A stratum with a complex composition and a distributed low-permeability soil layer is difficult to remediate quickly because the soil remediation does not proceed easily. For efficient purification, the permeability should be improved and the soil remediation agent (H2O2) should be injected into the contaminated section to make sufficient contact with the TPH (Total petroleum hydrocarbons). This study analyzed a method for crack formation and effective delivery of the soil remediation agent based on pneumatic fracturing, plasma blasting, and vacuum suction (the PPV method) and compared its improvement effect relative to chemical oxidation. A demonstration test confirmed the effective delivery of the soil remediation agent to a site contaminated with TPH. The injection amount and injection time were monitored to calculate the delivery characteristics and the range of influence, and electrical resistivity surveying qualitatively confirmed changes in the underground environment. Permeability tests also evaluated and compared the permeability changes for each method. The amount of soil remediation agent injected was increased by about 4.74 to 7.48 times in the experimental group (PPV method) compared with the control group (chemical oxidation); the PPV method allowed injection rates per unit time (L/min) about 5.00 to 7.54 times quicker than the control method. Electrical resistivity measurements assessed that in the PPV method, the diffusion of H2O22 and other fluids to the surface soil layer reduced the low resistivity change ratio: the horizontal change ratio between the injection well and the extraction well decreased the resistivity by about 1.12 to 2.38 times. Quantitative evaluation of hydraulic conductivity at the end of the test found that the control group had 21.1% of the original hydraulic conductivity and the experimental group retained 81.3% of the initial value, close to the initial permeability coefficient. Calculated radii of influence based on the survey results showed that the results of the PPV method were improved by 220% on average compared with those of the control group.

Analysis of Climate, Weather, Solar Radiation and Solar Energy in Major Cities of Tajikistan (타지키스탄 주요 도시의 기후, 날씨, 일사량 및 태양에너지 분석)

  • Taeyoo Na;Jeongdu Noh;Hyeontae Kim;Seong-Seung Kang
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.389-401
    • /
    • 2023
  • Climate, weather, insolation (solar radiation), and solar energy in major cities of Tajikistan were investigated prior to construction of infrastructure for the Dushanbe Solar Station. In Dushanbe city there was a 70% probability of sunny days from May 16 to October 23, a period of 5.2 months. August had the most sunny days of in the year, with 99% probability of a sunny, the cloudiest month was February with a 41% chance of being sunny. In major cities of the Sughd and Gorno-Badakhshan states, the average number of cloudy days per month was ~3.3, with Dzhauz having 53 day and Fedchnko Glacier 79 days. For the 18 major cities of Tajikistan, the average annual total solar radiation was 2,429 W/m2, and the average monthly solar radiation was 202 W/m2. The city with the lowest annual total and monthly average solar radiation was Shartuz in Sughd state, with values ~2.7% less than the national average. The cities with the highest annual total and monthly average solar radiation were Khorog and Jirgatol in Gorno-Badakhshan state, with values ~10% above the national average. The daily average incident shortwave solar energy in the cities Dushanbe, Karakul, and Jirgatol was ~7.8 kWh per 2.4 m2 during summer (May-August), and 2.7 kWh during winter (November-February), or ~35% that of summer.

Analysis of Nitrogen and Phosphorus Benthic Diffusive Fluxes from Sediments with Different Levels of Salinity (염분농도에 따른 호소 퇴적물 내 질소 및 인 용출 특성 분석)

  • Seulgi Lee;Jin Chul Joo;Hee Sun Moon;Dong Hwi Lee;Dong Jun Kim;Jiwon Choi
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.85-96
    • /
    • 2023
  • The study involved the categorization of domestic lakes located in South Korea into three groups based on their salinity levels: upstream reservoirs with salinity less than 0.3 psu, estuarine reservoirs with salinity ranging from 0.3 to 2 psu, and brackish lagoons with salinity exceeding 2 psu. Subsequently, the research assessed variations in the concentrations of total nitrogen (T-N) and total phosphorus (T-P) in the sediment of these lakes using statistical analysis, specifically one-way analysis of variance (ANOVA). Additionally, a laboratory core incubation test was conducted to investigate the benthic nutrient fluxes in Songji lagoon (salinity: 11.80 psu), Ganwol reservoir (salinity: 0.73 psu), and Janggun reservoir (salinity: 0.08 psu) under both aerobic and anoxic conditions. The findings revealed statistically significant differences in the concentrations of T-N and T-P among sediments in the lakes with varying salinity levels (p<0.05). Further post-hoc analysis confirmed significant distinctions in T-N between upstream reservoirs and estuarine reservoirs (p<0.001), as well as between upstream reservoirs and brackish lagoons (p<0.01). For T-P, a significant difference was observed between upstream reservoirs and brackish lagoons (p<0.01). Regarding benthic nutrient fluxes, Ganwol Lake exhibited the highest diffusive flux of NH4+-N, primarily due to its physical characteristics and the inhibition of nitrification resulting from its relatively high salinity. The flux of NO3--N was lower at higher salinity levels under aerobic conditions but increased under anoxic conditions, attributed to the impact of salinity on nitrification and denitrification. Additionally, the flux of PO43--P was highest in Songji Lake, followed by Ganwol Lake and Janggun Reservoir, indicating that salinity promotes the diffusive flux of phosphate through anion adsorption competition. It's important to consider the influence of salinity on microbial communities, growth rates, oxidation-reduction processes, and nutrient binding forms when studying benthic diffusive nutrient fluxes from lake sediments.

Development of System for Real-Time Object Recognition and Matching using Deep Learning at Simulated Lunar Surface Environment (딥러닝 기반 달 표면 모사 환경 실시간 객체 인식 및 매칭 시스템 개발)

  • Jong-Ho Na;Jun-Ho Gong;Su-Deuk Lee;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.281-298
    • /
    • 2023
  • Continuous research efforts are being devoted to unmanned mobile platforms for lunar exploration. There is an ongoing demand for real-time information processing to accurately determine the positioning and mapping of areas of interest on the lunar surface. To apply deep learning processing and analysis techniques to practical rovers, research on software integration and optimization is imperative. In this study, a foundational investigation has been conducted on real-time analysis of virtual lunar base construction site images, aimed at automatically quantifying spatial information of key objects. This study involved transitioning from an existing region-based object recognition algorithm to a boundary box-based algorithm, thus enhancing object recognition accuracy and inference speed. To facilitate extensive data-based object matching training, the Batch Hard Triplet Mining technique was introduced, and research was conducted to optimize both training and inference processes. Furthermore, an improved software system for object recognition and identical object matching was integrated, accompanied by the development of visualization software for the automatic matching of identical objects within input images. Leveraging satellite simulative captured video data for training objects and moving object-captured video data for inference, training and inference for identical object matching were successfully executed. The outcomes of this research suggest the feasibility of implementing 3D spatial information based on continuous-capture video data of mobile platforms and utilizing it for positioning objects within regions of interest. As a result, these findings are expected to contribute to the integration of an automated on-site system for video-based construction monitoring and control of significant target objects within future lunar base construction sites.

Structural relationship among justice of non-face-to-face exam, trust, and satisfaction with university (치위생(학)과 학생이 지각한 비대면 시험의 공정성, 시험 불안 및 학교 신뢰 간의 구조적 관계)

  • Hyeong-Mi Kim;Chang-Hee Kim;Jeong-Hee Kim
    • Journal of Korean Dental Hygiene Science
    • /
    • v.6 no.1
    • /
    • pp.37-50
    • /
    • 2023
  • Background: This study investigated the structural relationships among justice, test anxiety, and school reliability s non-face-to-face tests of dental hygiene students. Methods: A survey was conducted with 267 dental hygiene students. The survey items included general characteristics, opinions on evaluation, the fairness of non-face-to-face tests (distributive, procedural, and interactional justice), school satisfaction, and school reliability. For statistical analysis, independent-sample t-tests, one-way ANOVA, and structural modeling analyses were performed. Results: Among factors that directly affected distributive justice and reliability towards non-face-to-face tests, the higher the interactional justice (β=0.401, p<0.001) and distributive justice (β=0.232, p=0.002) levels, the higher the school satisfaction. The higher the school satisfaction (β=0.606, p<0.001) and procedural justice (β=0.299, p<0.001) levels, the higher the perceived reliability of the school. Factors that indirectly affected school reliability included interactional justice (β=0.243, p=0.010) and distributive justice (β=0.141, p=0.010). Interactional justice (β=0.592, p=0.010) and distributive justice (β=0.208, p=0.010) were the factors affecting school satisfaction. Moreover, factors that influenced school reliability were distributive justice (β=0.56, p=0.010), interactional justice (β=0.332, p=0.010), procedural justice (β=0.229, p=0.010), and distributive justice (β=0.116, p=0.010). Conclusions: Students will trust and be satisfied with schools when schools and professors sufficiently provide information on face-to-face tests and ensure proper procedures to achieve reasonable grades as rewards for exerted time and effort. Furthermore, this study provides a reference base for developing a variety of content for fair, non-face-to-face tests, thereby allowing students to trust their schools.

Views on Life and Humanity in Daesoon Thought (대순사상의 생명관과 인생관)

  • Choi, Chi-bong
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.33
    • /
    • pp.319-349
    • /
    • 2019
  • This study aims to elucidate the origin and yield of life and its characteristics and purpose in Daesoon Thought. Thereby, Taegeuk (the Great Ultimate) and Sangje (the Supreme God) have been deemed the source and ontology of life. The structure of each living creature is explained through reason (理), energy (氣) and spirit (神). In addition, through vital reason and living energy, the purpose of life makes the realization of the benevolent characteristics of life possible through the mind of Sangje. This line of research is unique among currently available research views of life as it perceives the spirit to be an ontological entity with functions and interactive engagement. By way of contrast, prior research suggests that spirit is life itself and includes it in the category of life and death. The Daesoon view of life is unique in that it is somewhat influenced by ontology and developmental theories from Confucianism, yet the concept of divine beings suggests a humanistic Sangje, who presides over the Great Ultimate. The realization of reason in this model is rather thought-provoking. Humans, just like other living things, are born with vital essence and function and interact as a main source to preside over the innate spirits inside themselves. Humans take responsibility for a certain sphere in the Three Realms that make up the world. They are also recognized as a significant feature in the world. Such an idea in Daesoon Thought depicts that 'the enshrinement of spirit into human being (神封於人),' follows Heaven and Earth. This is done to rectify humans in order to meet the needs of the universe and ultimately establish the era of the enshrinement of spirits into human beings. As for humanity, this possibility exists because of the spirits contained within their inner-selves. When cultivating oneself, humans and outer spirits actively interact with each other. This is likely to cause changes in a human's constitution and characteristics. In the end, one can be enshrined with corresponding divine beings according to one's degree of cultivation. Humans are born through the command of Sangje and the accomplishments of their ancestors as well as the energy of the universe. Present day humans encounter the era of human nobility and the era of humankind's divine salvation. Thereby, the purpose of human life is to contribute to the universe. To achieve this goal, the most important thing is to wholly realize that one's nature and reason were endowed by Heaven, which emerged from virtuous conduct in society. This is also akin to the movement of reason in Jeungsanist Thought. Sangsaeng (mutual beneficence) among oneself and others and between human beings and divine beings can be completed through the resolution of grievances for mutual beneficence and the grateful reciprocation of favors for mutual beneficence. If one accomplishes the perfected state of one's own nature and reveals it wholly, then one will be fully able to interact with spirits and reach the state of the human nobility.