• Title/Summary/Keyword: 공시체 크기

Search Result 83, Processing Time 0.024 seconds

Evaluation of Unit Weight and Strength of Sand Using Electro-mechanical Impedance (전기-역학적 임피던스를 이용한 모래의 단위중량 및 강도 평가)

  • Park, Sung-Sik;Woo, Seung-Wook;Lee, Jung-Shin;Lee, Sae-Byeok;Lee, Jun Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.33-42
    • /
    • 2018
  • In this study, the EMI (electro-mechanical impedance) of a small piezoelectric sensor was applied for measuring a unit weight and cementation (strength) of sand. Three different sizes of uncemented Nakdong River sand were filled loosely or densely into a compaction mold. A piezoelectric sensor with 20 mm in diameter was installed within sand for impedance measurement. A small Nakdong River sand was mixed with cement ratios of 4, 8 12, 16% and then compacted into a specimen with 50 mm in diameter and 100 mm in height. The specimen consisted of 6 layers with a sensor at the third layer. The impedance signals for 3 days and unconfined compressive strength at the 3rd day were measured. As the unit weight of uncemented sand increased, the resonant frequency increased slightly from 102 to 105 kHz but a conductance at resonant frequency decreased. For cemented sands, as the curing time and cement ratio increased, the resonant frequency increased significantly from 129 to 266 kHz but the conductance at resonant frequency decreased. The unconfined compressive strength (UCS) of cemented sands was between 289 and 1,390 kPa for different cement ratios. The relationship of UCS and resonant frequency linearly increased but one with a conductance at resonant frequency was in inverse proportion.

Comparison of Shear Strength of Coarse Materials Measured in Large Direct Shear and Large Triaxial Shear Tests (대형 직접전단시험과 대형 삼축압축시험에 의한 조립재료의 전단강도 비교)

  • Seo, Minwoo;Kim, Bumjoo;Ha, Iksoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.25-34
    • /
    • 2009
  • Since the particle sizes of the coarse materials used in dam or harbor constructions are much larger than those of typical soils, it is desirable that large shear testing apparatuses are used when performing shear tests on the coarse materials to obtain as accurate results as possible. Two large-scale shear testing apparatuses, large direct shear testing apparatus and large triaxial shear testing apparatus, are commonly used. Currently in Korea, however, there have not been many cases in which shear tests were done using the large apparatus due to mainly difficulties in manufacturing, diffusing, and operating them. In present study, both large direct shear tests and large triaxial shear tests were performed on the coarse materials, which are used as dam fill materials, for 6 test cases in which particle sizes, specimen sizes, vertical pressure (confining pressure) conditions were little different, and then, the shear strength characteristics of the materials were compared with the two different shear tests. The test results showed that, by the Mohr-Coulomb failure criterion, overall the shear strength obtained by the large direct shear tests was larger than that by the large triaxial shear tests. Moreover, the shear strength under the normal stress of 1,000 kPa was about 10 to 70% larger for the large direct shear tests than for the large triaxial shear tests, revealing the larger differences in the coarse materials, compared to typical soils.

  • PDF

A Rheological Study on Creep Behavior of Clays (점토(粘土)의 Creep 거동(擧動)에 관한 유변학적(流變學的) 연구(研究))

  • Lee, Chong Kue;Chung, In Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.53-68
    • /
    • 1981
  • Most clays under sustained load exhibit time-dependent deformation because of creep movement of soil particles and many investigators have attempted to relate their findings to the creep behavior of natural ground and to the long-term stability of slopes. Since the creep behavior of clays may assume a variety of forms depending on such factors as soil plasticity, activity and water content, it is difficult and complicated to analyse the creep behavior of clays. Rheological models composed of linear springs in combination with linear or nonlinear dashpots and sliders, are generally used for the mathematical description of the time-dependent behavior of soils. Most rheological models, however, have been proposed to simulate the behavior of secondary compression for saturated clays and few definitive data exist that can evaluate the behavior of non-saturated clays under the action of sustained stress. The clays change gradually from a solid state through plastic state to a liquid state with increasing water content, therefore, the rheological models also change. On the other hand, creep is time-dependent, and also the effect of thixotropy is time-function. Consequently, there may be certain correlations between creep behavior and the effects of thixotropy in compacted clays. In addition, the states of clay depend on water content and hence the height of the specimen under drained conditions. Futhermore, based on present and past studies, because immediate elastic deformation occurs instantly after the pressure increment without time-delayed behavior, the factor representing immediate elastic deformations in the rheological model is necessary. The investigation described in this paper, based on rheological model, is designed to identify the immediate elastic deformations and the effects of thixotropy and height of clay specimens with varing water content and stress level on creep deformations. For these purposes, the uniaxial drain-type creep tests were performed. Test results and data for three compacted clays have shown that a linear top spring is needed to account for immediate elastic deformations in the rheological model, and at lower water content below the visco-plastic limit, the effects of thixotropy and height of clay specimens can be represented by the proposed rheological model not considering the effects. Therefore, the rheological model does not necessitate the other factors representing these effects. On the other hand, at water content higher than the visco-plastic limit, although the state behavior of clays is visco-plastic or viscous flow at the beginning of the test, the state behavior, in the case of the lower height sample, does not represent the same behavior during the process of the test, because of rapid drainage. In these cases, the rheological model does not coincide with the model in the case of the higher specimens.

  • PDF

Evaluation for Applicability of Reinforced Concrete Structure with Domestic Pond Ash (국산 매립회 골재를 사용한 콘크리트 구조물의 적용성 평가)

  • Lee, Bong-Chun;Jung, Sang-Hwa;Chae, Sung-Tae;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.541-550
    • /
    • 2011
  • Many researches have been performed on concrete with fly ash and bottom ash. However researches on concrete with pond ash (PA) and its application to RC (Reinforced Concrete) structure are limitedly carried out. This paper presents an applicability of PA concrete in construction of real size structure. Referring to the previous study, 2 domestic PA samples with normal performance are selected and 2 replacement ratios (25% and 50%) to fine aggregate are considered for 5 PA concrete structures consisting of column, slab, and wall. In order to evaluate the property of fresh concrete, several tests including air content, slump, and setting time are performed. Using cored out samples from hardened PA concrete structure, tests for strength, resistance to carbonation and chloride penetration are carried out and compared with control samples. Additionally, tests for rebound hardness, drying shrinkage, and hydration heat are performed for PA concrete structure. The test results showed that PA concrete has reasonable strength and durability performances compared to those of normal concrete. Therefore, its potential application to RC structure is promising. The PA aggregate can be more actively used for RC structures with better quality control for content of fly ash, bottom ash, and unburned carbon.

Occurrence of Bluish Green Mold of Pleurotus eryngii by Penicillium corylophilum (Penicillium corylophilum에 의한 큰느타리버섯(Pleurotus eryngii) 푸른곰팡이병의 발생)

  • Jo, Woo-Sik;Rew, Young-Hyun;Kim, Sung-Han;Yun, Jae-Tak;Choi, Boo-Sull
    • The Korean Journal of Mycology
    • /
    • v.27 no.6 s.93
    • /
    • pp.412-414
    • /
    • 1999
  • Bluish green mold of Pleurotus eryngii caused by Penicillium was observed in Seungju on Feburary 4, 1999. The causal fungus was identified as Penicillium corylophilum based on its cultural and morphplogical characteristics. Conidiophores one-stage branched, terminating in a whorl of $2{\sim}4$ metulae. Metulae mostly $10{\sim}18{\times}2.5{\sim}3.0\;{\mu}m$. Phialides flask-shaped, $9{\sim}13{\times}2.2{\sim}2.8\;{\mu}m$. Conidia subglobose, $2.5{\sim}3.2{\times}2.5{\sim}3.0\;{\mu}m$. Colonies on Czapek agar mostly attaining a diameter of 21 mm within 7 days at $25^{\circ}C$. Colour blue-green soon becoming grey-green. Pathogenicity test by wound inoculation revealed that Penicillium corylophilum caused the same symptoms as observed in the field at $6{\sim}7$ days after inoculation.

  • PDF

Inverse Emulsion Polymerization of Water Absorbent Polymer for Strength Enhancement of Mortars (모르타르 강도 증진을 위한 고분자 흡수제의 역유화 중합)

  • Hwang, Ki-Seob;Jung, Myoung-Geun;Jang, Seok-Soo;Jung, Yong-Wook;Lee, Seung-Han;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.434-441
    • /
    • 2010
  • Sodium polyacrylate (PAANa) was synthesized by inverse emulsion polymerization method to absorb excess water in concrete. Liquid paraffin was used as a continuous phase. Acrylic acid (AA) was neutralized by aqueous sodium hydroxide solution (8 M). Different amount of N,N'-methylene bisacrylamide (MBA) was used as a crosslinking agent to change crosslinking density of the synthesized PAANa. The size distribution of synthesized particles was measured by particle size analyzer. Swelling ratio of crosslinked PAANa was evaluated from the equation in D. I. water, cement aqueous solution, and $Ca(OH)_2$ aqueous solution. The FTIR spectroscopy was used to characterize $Ca^{2+}$ ion interaction with PAANa. Incorporation of 1.0 wt% PAANa into cement increased compressive and flexural strength approximately 30% and 10%, respectively, compared with those of ordinary portland cement.

Effect of Fineness Levels of GGBFS on the Strength and Durability of Concrete (콘크리트의 강도 및 내구성에 대한 고로슬래그미분말 분말도의 영향)

  • Lee, Seung Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1095-1104
    • /
    • 2014
  • This paper presents the results of experimental work on both strength characteristics and durability of concrete or mortar having 50% ground granulate blastfurnace slag(GBS) with different fineness levels (4,450, 6,000 and $8,000cm^2/g$). Compressive and split tensile strength test results indicated that the concrete with a higher fineness level of GBS exhibited a better strength development due to the acceleration of latent hydraulic property at the later curing stage compared with ordinary portland cement concrete. Meanwhile, it was found that a higher fineness level of GBS showed some negative effects on the resistance against freezing-thawing action. However, incorporation of GBS to concrete, irrespective of fineness levels, significantly enhanced the chloride ions penetration resistance. The resistance against sulfate attack of mortar with GBS was greatly dependent on the attacking sources from sulfate environments.

Characteristics of Cyclic Drying-Wetting on Strength of Solidified Soil Mixed Porosity Silica (다공성 실리카를 혼합한 경화토의 건습반복 강도특성)

  • Kim, Donggeun;Bang, Seongtaek;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.10
    • /
    • pp.29-34
    • /
    • 2014
  • In order to examine strength properties depended on climate changes of solidified soil amended by porosity silica which enhance harms of cement, this study conducts a wetting and drying repetition test and then, attempts to verify strength properties before and after solidified soil gets environmental influence. Test pieces for the unconfined compression test changed the mixing ratio of solidified soil compared to mixed soil weigh to 5 %, 10 % and 15 %. For each step, it was created by mixing 0.5 %, 1.0 % and 1.5 % of wood chips, and curing period for 7, 14, and 28 days. Then, the wetting and drying repetition process was repeated 0, 3, 6, and 12 cycles to analyze mechanical properties. To also evaluate changes of relative dynamic elastic modulus before and after the wetting and drying, dynamic elastic modulus tests were conducted when each cycle was completed.

Purification and Characterization of Extracellular Laccase from Trametes versicolor (Trametes versicolor 배양액으로부터 단리 정제된 Laccase의 효소적 특성)

  • Kim, Hyun Joo;Bae, Hyeun Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.61-66
    • /
    • 2007
  • The study was performed to purify and characterize laccase in culture of Trametes versicolor. The fungus was grown in liquid culture media of PDB and added 2,5-xylidine (0.2 mM) after 5 days to enhance the production of laccase. The fungal culture was incubated at $25^{\circ}C$ on a rotary shaker (120 rpm) for 7days, and the culture broth was clarified through Glass filter (GF/C). The aqueous solution was concentrated by ultramicrofiltration (Viva flow 50, GE Healthcare Bioscience, USA) and loaded onto a Hitrap Q FF column. Laccase activity could be detected at one peak, and this enzyme has a molecular mass of approximately 53kDa as determined by SDS-PAGE The optimum pH and temperature for syringaldazine were 5.0 and $60^{\circ}C$, respectively. The specific activity of crude, concentrated and purified laccase were 32, 409, and 1,243 U/mg, respectively.

Dynamic Properties and Settlement Characteristics of Korea Weathered Granite Soils (화강풍화토의 동적 물성치와 침하특성에 대한 연구)

  • Park, Jong-Gwan;Kim, Yeong-Uk;Lee, In-Mo
    • Geotechnical Engineering
    • /
    • v.9 no.2
    • /
    • pp.5-14
    • /
    • 1993
  • Weathered granite soil is the most representative as a surface soil in Korea. In this paper, the dynamic properties and settlement characteristics of Korea granite soil are studied through the dynamic triaxial compression tests. The dynamic characteristics are very important on the analysis of the foundations under dynamic loading such as machine vibration and earthquake. Soil samples having different grain sixtes were prepared at the relative densities between 80oA and 90oA and tested to measure shear moduli and damping ratios at each level of shear strain. The measured shear moduli of weathered granite soils showed large variations according to the grain sizes, confining pressures, relative densities and shear strains. Sandy weathered granite had a little larger dynamic properties than the average values of the sand studied by Seed and Idriss. Pot the well compacted granite soils, little residual settlements occured due to dynamic loading.

  • PDF