• Title/Summary/Keyword: 공법선정 모델

Search Result 42, Processing Time 0.027 seconds

A Neural Network Model for Selecting a Piling Method of Building Construction (건축공사 말뚝공법 선정을 위한 신경망 모델 개발)

  • Cheon Bong-Ho;Koo Choong-Wan;Um Ik-Joon;Koo Kyo-Jin
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.317-322
    • /
    • 2004
  • As a construction project in urban area tends to be high-rise and huge, the importance of the project's underground work, in terms of the cost and the schedule, is gradually increasing. It's extremely significant to choose a proper filing method, at the stage of underground work. However, in piling work many change orders have been occurred since a piling method is experientially selected based on uncertain information and many earth factors to consider. It has effects on the cost and the schedule of the project. In this study, we have suggested a decision model for piling method that can be used to determine and verify the suitable piling method in design and pre-construction phase of a project. Based on historical data, a neural network model has already proven to be efficient. The tests of the model for selecting a suitable piling method have progressed exactly with the data of 150 piling works which were done room 2000 to 2004 in Korea. The optimization or the developed neural network model has progressed with the data for teaming. The validity of the neural network model has been verified.

  • PDF

Decision Making Model using Multiple Matrix Analysis for Optimum Construction Method Selection (다중 매트릭스 분석 기법을 이용한 최적 건축공법 선정 의사결정지원 모델)

  • Lee, Jong-Sik;Lim, Myung-Kwan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.331-339
    • /
    • 2016
  • According to high-rise, complexation, and enlargement of buildings, various construction methods are being developed, and the significance of construction method selection about main work types has emerged as a major interest. However, it has been pointed out that hand-on workers cannot consider project characteristics carefully, and they lack an objective standard or reference for main construction method selection. Hence, the selection is being made depending on hand-on workers' experience and intuition. To solve this problem, various studies have proceeded for construction method selection of main work types using Artificial Intelligence like Fuzzy, AHP and Case-based reasoning. It is difficult to apply many different kinds of construction method selection to every main work type with consideration for characteristics of work types and condition of a construction site when selecting construction method in the field. Accordingly, this study proposed the decision-making model which can apply to fields easily. Using matrix analysis and liner transformation, this study verified consistency of study models applied in the process of soil retaining selection with a case study.

A Study on the Selection Model of Retaining Wall Methods Using Support Vector Machines (Support Vector Machine을 이용한 흙막이공법 선정모델에 관한 연구)

  • Kim, Jae-Yeob;Park, U-Yeol
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.2 s.30
    • /
    • pp.118-126
    • /
    • 2006
  • There is a greater importance for underground work designed and built in the urban areas when it comes to considering the cost-effectiveness and the period of construction commensurate with an increasing trend of skyscrapers. At this stage of underground work, it's extremely necessary to choose a proper earth retaining method. Therefore, the study has suggested the rational retaining wall method by developing the support vector machine(SVM) model as a tool to choose a proper retaining wall method applied at the stage of selecting the earth retaining method. In order to develop the SVM model, the binary SVM classifier is expanded into a multi-class classifier. and to present the feasibility of our SVM model, we considered 129 projects. Applying the 'SVM Model' developed in the study to the designing and developing stages of the earth retaining work will contribute to the successful outcomes by decreasing any changes of design from implementing the earth retaining.

A Study on the Selection Model of Retaining Wall Methods Using Case-Based Reasoning (사례기반추론을 이용한 흙막이공법 선정모델에 관한 연구)

  • Kim Jae-Yeob;Park U-Yeol;Kim Gwang-Hee;Kim Joong-Koo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.5 s.21
    • /
    • pp.76-83
    • /
    • 2004
  • There is a greater importance for underground work designed and built in the urban areas when it comes to considering the cost-effectiveness and the period of construction commensurate with an increasing trend of skyscrapers. At this stage of underground work, it's extremely necessary to choose a proper earth retaining method. However, a frequent change order during construction happens in Korea where different performers design and construct separately, so there is a great possibility for the change order to affect the aspects of construction cost and period which normally define the outcome of construction work. Therefore, the study has suggested the rational retaining wall method by developing the case-based reasoning model as stool to choose a proper retaining wall method applied at the stage of selecting the earth retaining method. Applying the 'CBR Model' developed in the study to the designing and developing stages of the earth retaining work will contribute to the successful outcomes by decreasing any changes of design from implementing the earth retaining work.

Development of Quantitative Decision Support Model for Optimal Form-Work Based on Construction Site Type (건축 공사현장 유형별 최적 거푸집 공법선정을 위한 정량적 의사결정 지원모델 개발)

  • Kim, Oh-Hyung;Cha, Hee-Sung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.4
    • /
    • pp.56-68
    • /
    • 2019
  • An optimal selection of form-work is very important in the construction project in terms of construction cost and duration management. Also, it substantially affects the quality of the structure and the finishing work. However, in South Korea, the decision making on the selection of form-work has been based on the experience and intuition of construction practitioners not on the objective data or rational decision-making system. In order to solve the problem, several types of research on the selection of form-work has been processed. However, they did not consider the construction site condition, which is one of the most important factors for the selection of form-work. Thus, the objective of this study is developing the objective decision supporting system considering the site condition. This study provides the quantitative decision support model for optimal form-work based on construction site type. It is expected that the decision support model will help the practitioners decide optimal form-work based on the objective data. It will ameliorate the existing decision making process using experience and intuition. In addition, because the model considers site-conditions, it will provide more accurate and appropriate decision on the selection of an optimal form-work.

Decision Support Model for Selecting of Lifting Methods for Large Spatial Roof Construction (대공간 지붕철골공사 양중공법 선정을 위한 의사결정지원모델)

  • Cha, Min-Su;Lee, Myung-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.489-498
    • /
    • 2018
  • The purpose of this study was to propose a decision support model for selecting a lifting method of large spatial roof construction. First, we deducted influential factors consist of 6 factors and 19 sub-factors through literature reviews and expert's advices. Second, the relative importance of each factor was calculated by Analytic Hierarchy Process. As a result, 'site condition(0.237)' among 6 factors and 'available space of the site(0.118)' among 19 sub-factors were identified as the most important factor for selecting lifting method. In addition, methods and procedures were established for evaluating alternatives of lifting methods for each influential factor. A decision support model was completed by providing the Site Suitability Index(SSI) of each lifting method. Finally, we got advices form experts who were actually in charge of the works for large spatial construction project to validate the model. The model proposed in this study was analyzed to be useful in selecting the lifting method. The findings of this study are expected to support the decision making of on-site managers when they select the lifting method on the beginning of the project.

QFD-Based Integrated Model of Dismantling Method Selection and FMEA Risk Assessment for Work Stage (QFD 기반의 해체공사 공법선정과 FMEA 위험성평가 통합 모델)

  • Lee, Hyung-Yong;Cho, Jae-Ho;Son, Bo-Sik;Chae, Myung-Jin;Kim, Hyun-Soo;Chun, Jae-Youl
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.629-640
    • /
    • 2021
  • According to statistics from the Ministry of Land, Infrastructure and Transport in 2018, approximately 37% of residential buildings in Korea need to be reconstructed. Due to the rapid growth of the demolition industry, many side effects such as environmental destruction and safety accidents are becoming a problem in the demolition of existing buildings. This study proposes a decision-making process for selecting the most suitable dismantling method for field application by comprehensively considering safety, economic feasibility, and environmental characteristics. In particular, field applicability is evaluated by evaluating risk factors for the selected method. To this end, this study proposes the TOPSIS method for the selection of the dismantling method using the QFD development concept, and the FMEA method as a continuous development process of the selected method.

A Framework for Developing a Method for Selecting a Retaining Wall System Using a Small Number of Samples (적은 수의 표본에 기초한 흙막이 공법선정 방법에 대한 기초연구)

  • Choi, Myung-Seok;Lee, Ghang
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.686-689
    • /
    • 2008
  • In the past decade, various data mining techniques have been used in construction engineering as a means to make informed decisions through the aid of useful knowledge discovered from historical data. Researchers in the construction domain are often confronted with a challenge to derive a meaningful conclusion with a limited sample of data. However, when the data size is small, the proposed results are often illogical. Even if the derived results are technically flawless, sometimes it is difficult to reproduce these results by using the same analysis method when a different set of data is used. This paper reviews some problems that stem from limited data size, and discusses several recommendations for dealing with these problems.

  • PDF

Development of Decision Making Model for Soft Foundation Improvement Method considering Technically, Economic Effective Factors (기술적 ${\cdot}$ 경제적 영향요소를 고려한 연약지반 개량공법의 의사결정모델 개발)

  • Lee, Heung-Chol;Woo, Sung-Kwon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.698-701
    • /
    • 2006
  • Various improvement methods to treat settlement and stability of structures on soft foundation, that is now continuously introduced after being scrutinized. Therefore, it is very important to select the most suitable method among these various ones. In this study, quantifying the importance of effective factors when making decision, inducing priority and significance weight, systematic standard is proposed for technical, economic factor in making selection of soft foundation improvement method.

  • PDF

A Study on the Economical Analysis Model for Asphalt Pavementin Congestion Area of Metropolitan (대도시 혼잡구간의 아스팔트 포장에 대한 경제성 분석 모델 연구)

  • Jo, Byung Wan;Tae, Ghi Ho;Kim, Do Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.771-781
    • /
    • 2006
  • This Study is about the development of LCC Analysis Model and Evaluation of VE. It was carried out to help the person's intention decision about choosing the pavement construction method that can deal with 'Pavement Life Factor' like Area Character and Traffic Volume efficiently, by considering the total life cycle cost of pavement life cycle happens according to the numbers of public use year. For this, we developed the new LCC Analysis Model by using the Data of Seoul city the representative city in Korea, and carried out VE Evaluation that reflects the opinions of specialists. This Analysis Model consists of cost items that affects directly the choice of pavement construction, except for the common cost items of the various pavement construction. And we investigated the propriety by applying our model to the example line that are used for the public at present. About the base data of cost items that are used for our analysis, we enhanced our model's confidence by using the statistics data of Seoul and the standard data of unit cost calculation.