• Title/Summary/Keyword: 공배양

Search Result 1,987, Processing Time 0.033 seconds

Rapid comparison of metabolic equivalence of standard medicinal parts from medicinal plants and their in vitro-generated adventitious roots using FT-IR spectroscopy (한약자원 품목별 표준시료와 기내 생산 부정근의 FT-IR 스펙트럼 기반 대사체 동등성 신속 비교)

  • Ahn, Myung Suk;Min, Sung Ran;Jie, Eun Yee;So, Eun Jin;Choi, So Yeon;Moon, Byeong Cheol;Kang, Young Min;Park, So-Young;Kim, Suk Weon
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.257-264
    • /
    • 2015
  • To determine whether metabolite fingerprinting for whole cell extracts based on Fourier transform infrared (FT-IR) spectroscopy can be used to discriminate and compare metabolic equivalence, standard medicinal parts from four medicinal plants (Cynanchum wilfordii Hemsley, Atractylodes japonica Koidz, Polygonum multiflorum Thunberg and Astragalus membranaceus Bunge) and their in vitro-produced adventitious roots were analyzed by FT-IR spectroscopy. The principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) from the FT-IR spectral data showed that the whole metabolic pattern from Cynanchum wilfordii was highly similar to Astragalus membranaceus. However, Atractylodes japonica and Polygonum multiflorum showed significantly different metabolic patterns. Furthermore, adventitious roots from Cynanchum wilfordii and Astragalus membranaceus also showed similar metabolic patterns compared to their standard medicinal parts. These results clearly show that mass proliferation of adventitious roots may be applied to aquire novel supply of standard medicinal parts from medicinal plants. However, the whole metabolic pattern from adventitious roots of Atractylodes japonica and Polygonum multiflorum were not similar to their standard medicinal parts. Furthermore, FT-IR spectroscopy combined with multivariate analyses established in this study may be applied as an alternative tool to discriminate the whole metabolic equivalence from several standard medicinal parts. Thus, we suggest that these metabolic discrimination systems may be applied for metabolic standardization of herbal medicinal resources.

Optimization of particle gun-mediated transformation system in Cymbidium (유전자총을 이용한 형질전환 심비디움 식물체 생산체계 최적화)

  • Noh, Hee-Sun;Kim, Mi-Seon;Lee, Yu-Mi;Lee, Yi-Rae;Lee, Sang-Il;Kim, Jong-Bo
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.293-300
    • /
    • 2011
  • This study is conducted to develop an efficient transformation system via particle bombardment with PLBs (Protocorm-like bodies) in Cymbidium. For this, pCAMBIA3301 vector which carries a herbicide-resistant bar gene and gus gene as a reporter gene was used for transformation with Cymbidium cultivars 'Youngflower ${\times}$ masako' line. To select transformants, proper concentration of herbicide, PPT (phosphinotricin), should be determined. As a result, 5 mg/l of PPT was selected as a proper concentration. Further, proper conditions for particle bombardment were determined to obtain a high frequency of transformation. Results showed that 1.0 ${\mu}g$ of DNA concentration, 1,100 and 1,350 psi for helium gas pressure, 1.0 ${\mu}m$ of gold particle and 6 cm of target distance showed the best result for the particle bombardment experiment. Also, pre-treatment with combination 0.2 M sorbitol and 0.2 M mannitol for 4 hrs prior to genetic transformation increased the transformation efficiency up to 2.5 times. Using transformation system developed in this study, 3.2 ~ 4.0 transgenic cymbidium plants can be produced from 100 bombarded PLBs on average. Putative transgenic plants produced in this system confirmed the presence of the bar gene by PCR analysis. Also, leaves from randomely selected five transgenic lines were applied for Basta solution (0.5% v/v) to check the resistance to the PPT herbicide. As a result, three of them showed resistance and one of them showed the strongest resistance with the maintenance of green color as non-transformed plants showed. Using this established transformation system, more genes of interests can be introduced into Cymbidium plants by genetic transformation in the future.

Metabolic comparison between standard medicinal parts and their adventitious roots of Cynanchum wilfordii (Maxim.) Hemsl. using FT-IR spectroscopy after IBA and elicitor treatment (IBA 및 elicitor 처리에 따른 백수오 기내 생산 부정근 및 표준품의 FT-IR 스펙트럼 기반 대사체 비교 분석)

  • Ahn, Myung Suk;So, Eun Jin;Jie, Eun Yee;Choi, So Yeon;Park, Sang Un;Moon, Byeong Cheol;Kang, Young Min;Min, Sung Ran;Kim, Suk Weon
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.250-256
    • /
    • 2018
  • To determine whether metabolite fingerprinting for whole cell extracts based on Fourier transform infrared spectroscopy (FT-IR) can be used to discriminate and compare metabolic equivalence, standard medicinal parts of Cynanchum wilfordii (Maxim.) Hemsl. and their adventitious roots were subjected to FT-IR. The principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) from FT-IR spectral data showed that whole metabolic pattern from the adventitious root of Cynanchum wilfordii was highly similar to its standard medicinal parts. These results clearly showed that mass proliferation of adventitious roots could be applied for the novel supply of standard medicinal parts of medicinal plants. Furthermore, FT-IR spectroscopy combined with multivariate analysis established in this study could be applied as an alternative tool for discriminating of whole metabolic equivalence from standard medicinal parts. Thus, it is proposed that these metabolic discrimination systems from the adventitious root of Cynanchum wilfordii could be applied for metabolic standardization of in vitro grown Cynanchum wilfordii.

Mammalian Cloning by Nuclear transfer, Stem Cell, and Enzyme Telomerase (핵치환에 의한 cloning, stem cell, 그리고 효소 telomerase)

  • 한창열
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.423-428
    • /
    • 2000
  • In 1997 when cloned sheep Dolly and soon after Polly were born, it had become head-line news because in the former the nucleus that gave rise to the lamb came from cells of six-year-old adult sheep and in the latter case a foreign gene was inserted into the donor nucleus to make the cloned sheep produce human protein, factor IX, in e milk. In the last few years, once the realm of science fiction, cloned mammals especially in livestock have become almost commonplace. What the press accounts often fail to convey, however, is that behind every success lie hundreds of failures. Many of the nuclear-transferred egg cells fail to undergo normal cell divisions. Even when an embryo does successfully implant in the womb, pregnancy often ends in miscarriage. A significant fraction of the animals that are born die shortly after birth and some of those that survived have serious developmental abnormalities. Efficiency remains at less than one % out of some hundred attempts to clone an animal. These facts show that something is fundamentally wrong and enormous hurdles must be overcome before cloning becomes practical. Cloning researchers now tent to put aside their effort to create live animals in order to probe the fundamental questions on cell biology including stem cells, the questions of whether the hereditary material in the nucleus of each cell remains intact throughout development, and how transferred nucleus is reprogrammed exactly like the zygotic nucleus. Stem cells are defined as those cells which can divide to produce a daughter cell like themselves (self-renewal) as well as a daughter cell that will give rise to specific differentiated cells (cell-differentiation). Multicellular organisms are formed from a single totipotent stem cell commonly called fertilized egg or zygote. As this cell and its progeny undergo cell divisions the potency of the stem cells in each tissue and organ become gradually restricted in the order of totipotent, pluripotent, and multipotent. The differentiation potential of multipotent stem cells in each tissue has been thought to be limited to cell lineages present in the organ from which they were derived. Recent studies, however, revealed that multipotent stem cells derived from adult tissues have much wider differentiation potential than was previously thought. These cells can differentiate into developmentally unrelated cell types, such as nerve stem cell into blood cells or muscle stem cell into brain cells. Neural stem cells isolated from the adult forebrain were recently shown to be capable of repopulating the hematopoietic system and produce blood cells in irradiated condition. In plants although the term$\boxDr$ stem cell$\boxUl$is not used, some cells in the second layer of tunica at the apical meristem of shoot, some nucellar cells surrounding the embryo sac, and initial cells of adventive buds are considered to be equivalent to the totipotent stem cells of mammals. The telomere ends of linear eukaryotic chromosomes cannot be replicated because the RNA primer at the end of a completed lagging strand cannot be replaced with DNA, causing 5' end gap. A chromosome would be shortened by the length of RNA primer with every cycle of DNA replication and cell division. Essential genes located near the ends of chromosomes would inevitably be deleted by end-shortening, thereby killing the descendants of the original cells. Telomeric DNA has an unusual sequence consisting of up to 1,000 or more tandem repeat of a simple sequence. For example, chromosome of mammal including human has the repeating telomeric sequence of TTAGGG and that of higher plant is TTTAGGG. This non-genic tandem repeat prevents the death of cell despite the continued shortening of chromosome length. In contrast with the somatic cells germ line cells have the mechanism to fill-up the 5' end gap of telomere, thus maintaining the original length of chromosome. Cem line cells exhibit active enzyme telomerase which functions to maintain the stable length of telomere. Some of the cloned animals are reported prematurely getting old. It has to be ascertained whether the multipotent stem cells in the tissues of adult mammals have the original telomeres or shortened telomeres.

  • PDF

Plant regeneration and transformation of grape (Vitis labrusca L.) via direct regeneration method (포도 (Vitis labrusca L.)의 직접 재분화 방법을 이용한 식물체 재분화와 형질전환)

  • Kim, Se Hee;Shin, Il Sheob;Cho, Kang Hee;Kim, Dae Hyun;Kim, Hyun Ran;Kim, Jeong Hee;Lim, Sun-Hyung;Kim, Ki Ok;Lee, Hyang Bun;Do, Kyung Ran;Hwang, Hae Seong
    • Journal of Plant Biotechnology
    • /
    • v.40 no.4
    • /
    • pp.210-216
    • /
    • 2013
  • Efficient regeneration methods and transformation system are a priority for successful application of genetic engineering to vegetative propagated plants such as grape (Vitis labrusca L.). This research is to establish shoot regeneration system from plant explants for 'Campbell Early', 'Tamnara', 'Heukgoosul', 'Heukbosek' using two types of plant growth regulators supplemented to medium. The highest adventitious shoot regeneration rate of 5% was achieved on a medium containing of Murashige and Skoog (MS) inorganic salts and Linsmaier and Skoog (LS) vitamins, 2 mg/L of TDZ and 0.1 mg/L of IBA. Leaf tissue of 'Campbell Early', was co-cultivated with Agrobacterium strains, LBA4404 containing the vector pBI121 carrying with CaMV 35S promoter, gus gene as reporter gene and resistance to kanamycin as selective agent, the other Agrobacterium strains, GV3101 containing the vector pB7 WG2D carrying with mPAP1-D gene. mPAP1-D is a regulatory genes of the anthocyanin biosynthetic pathway. 'Campbell Early' harboring mPAP1-D gene was readily able to be selected by red color due to anthocyanin accumulation in the transformed shoot. These results might be helpful for further studies to enhance the transformation efficiency in grape.

Effect of Biomass-derived Inhibitors on Ethanol Production (바이오매스 유래의 저해물질이 에탄올 생산에 미치는 영향)

  • Lee, Myung-Gu;Cho, Dae-Haeng;Kim, Yong-Hwan;Lee, Jin-Won;Lee, Jong-Ho;Kim, Seung-Wook;Cho, Jae-Hoon;Lee, Do-Hoon;Kim, Sang-Yong;Park, Chul-Hwan
    • KSBB Journal
    • /
    • v.24 no.5
    • /
    • pp.439-445
    • /
    • 2009
  • The process for ethanol production requires lignocellulosic biomass to be hydrolyzed to generate monomeric sugars for the fermentation. During hydrolysis step, a monomeric sugars and a broad range of inhibitory compounds (furan derivatives, weak acids, phenolics) are formed and released. In this study, we investigated the effects of inhibitory compounds on the fermentative performance of Saccharomyces cerevisiae K35 and Pichia stipitis KCCM 12009 in ethanol production, two yeast strains were fermented in the synthetic medium including six inhibitory compounds such as 5-hydroxymethylfurfura (5-HMF), furfural, acetic acid, syringaldehyde, vanillic acid and syringic acid. Ethanol of over 40 g/L was produced by two yeast strains in the absence of inhibitory compounds, respectively. Most inhibitory compounds except acetic acid had a little effect on the ethanol production, but acetic acid showed high inhibition effect on the cell growth and ethanol production.

Development of Transgenic Crops and Research Projects for Biotechnology Application (유전자 전환작물 개발 연구 현황과 과제)

  • 정태영
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.5
    • /
    • pp.289-296
    • /
    • 2001
  • The main objective of this topic is to establish strategies and to plan biotechnology researches which are related to the agricultural improvements especially focusing on the crop breeding in Korea. From 1960's to 1980's government policy had been emphasized to develope high yielding cultivars for the self sufficient supply of the staple food crops. As a result, considerable increase of rice production has been made with accumulating technology and man's powers. Recently genetically modified crops harboring useful characteristics have been developed using biotechnology and released in the developed countries. National research institutes and private companies have been developed biotechnology researches to establish competitive capabilities, however they have not been successfully used in commercialization. Therefore it is necessary to promote the practical. application by connecting molecular technology with conventional breeding. Proposed research projects are; (1) basic researches including plant genome studies, (2) developing new cultivars through gene transformation, (3) screening and producing antioxidants, secondary metabolite substances and edible vaccines. To set a government policy, both domestic and international research trends were reviewed and possibility of success based on the economic view point were discussed. The intellectual property and preservation of environment play a key role to decide the research priority. It is also necessary for us to make one step system for the distribution of research resources such as microorganisms, genes cloned, plant seeds and research informations for promoting research activities.

  • PDF

Distinct Spatio-temporal Expression Patterns of Patatin Promoter-GUS Gene Fusion in Transgenic Potato Microtubers (형질전환 감자 소괴경의 발달단계에 따른 Patatin Promoter-GUS 유전자의 발현 분석)

  • Youm, Jung-Won;Kim, Mi-Sun;Lee, Byoung-Chan;Kang, Won-Jin;Jeon, Jae-Heung;Joung, Hyouk;Kim, Hyun-Soon
    • Journal of Plant Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.13-18
    • /
    • 2003
  • This study was carried out to investigate the expression patterns of foreign gene that controlled by tuber-specific patatin promoter in transgenic potatoes. Potato leaf disc cultured in vitro were transformed by the Agrobacterium strain LBA4404 containing pBl121 or pATGUS from potato cv. Desiree. In order to select the transgenic lines, gene-specific primers deduced from the NPTII were synthesized and used for polymerase chain reaction. The down part of the putative transgenic potatoes was transplanted weekly onto sucrose-enriched medium to accelerate the microtuber formation. RNA gel blot analysis was performed on the total RNAs obtained from tuber that had been harvested at a week interval. Also, histochemical assay was observed in the explants transformed with either pBI121 or pATGUS. Results showed that the transgenic plant containing pATGUS expressed GUS transcripts mainly at the tuber, not in stem, with the highest expression level in 5 weeks-grown microtubers. In contrast to pATGUS plants, the transformed plants with pBI121 showed an equal expression pattern throughout the whole developing stages. Consistent with RNA gel blot analysis, histochemical GUS staining and enzyme activity exhibited pATGUS transcripts were at the highest level in 5 weeks cultures. From these results, we suggest that the best stage to analyze the foreign gene introduced by patatin promoter into potato plants is at 5 weeks cultures after tuber formation.

Effects of Selenium Supplying Methods on the Growth and Se Uptake of Hydroponically Grown Tomato Plants (Selenium공급방법이 수경재배 토마토의 생장과 Se 흡수에 미치는 영향)

  • Lee Cheol-Kyu;Cho Kyung-Cheol;Lee Jeong-Hyun;Cho Ja-Yong;Seo Beom-Seok;Yang Won-Mo
    • Journal of Bio-Environment Control
    • /
    • v.14 no.4
    • /
    • pp.284-288
    • /
    • 2005
  • This study was conducted to clarify the effects of supplying methods of selenium on the growth and Se uptake of hydroponically grown tomato plants. Tomato seeds (Lycopersicum esculentum Mill. cv. Momotaro T-93, Daki Seed Co.) were sown in plug tray with fifty holes, and raised for sixty days. Tomato seedlings transplanted to coco fiber slabs were supplied with the nutrient solutions adjusted to EC $2.3dS{\cdot}m^{-1}$ and pH $5.8\~6.2$ recommended by the Japanese Horticultural Experiment Station. Selenium forms used were inorganic $SeO_2$ (here in after referred to Se) and organic selenium chlenium with sugar fatty acid ester (here in after referred to chelated-Se). 10 ppm selenium solutions were treated to tomato plants with foliar applications, drenching, and foliar application plus drenching. Growth characteristics in terms of plant height, number of leaves, leaf area and chlorophyll content were significantly increased in the plot of foliar application ot Se, and in the plot of foliar application plus drenching of chelated-Se than other plots, respectively. Transported contents of selenium into the tomato fruits were highest as 0.302 ppm in the plot of foliar application plus drenching of chelated-Se. Also, it had tended to be higher in the plot of foliar application plus drenching than in the plots of foliar application or drenching in both of Se and chelated-Se. Foliar application and drenching of organic chelated-Se were effective to produce the functional tomato fruits.

Effects of Environmental Factors on Growth and Nitrogen Fixation Activity of Autumn Olive (Elaeognus umbellata) Seedlings (보리수나무 유식물의 생장과 질소고정 활성에 대한 환경요인의 영향)

  • 송승달
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.387-394
    • /
    • 1994
  • Effects of environmental factors of light, temperature, nitrogen sources and water stress were analyzed quantitatively on the nodule formation and nitrogen fixation activity of autumn olive plant (Elaeagnu$ umbellala Thunb.) during the seedling growth. Seedlings showed the maximum nitrogenase activity of $72.5\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$ in the early nodulation stage. The relative growth rate and T/R ratio changed from $1.60%{\cdot}d^{-1}$ and 1.12 in the earlier stage to $3.75%{\cdot}d^{-1}$ and 2.31 in the later stage, respectively. light conditions of 20-25, 1015 and 4-6% resulted in decreases of 41, 54 and 71% of the nitrogenase activity, respectively. Nodules incubated in 15, 20, 25 and $30^{\circ}C$ showed the activities of 5.4, 24.7, 51.6 and $58.5\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$ respectively. Pretreatment with low temperature ($15^{\circ}C$) followed incubation at $30^{\circ}C$ attained higher nitrogenase activity ($66.5\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$) than that with higher temperature ($35^{\circ}C$). The oxygen pressure above 16 kPa is necessary for saturation of the nodule activity, but the activity was inhibited severely by physical impact such as the exision or isolation of nodules from the root. The relative activities of early nodules grown in pH 5.5, 6.5 and 8.0 were 89, 100 and 40% and those grown in 1 and 3 mM of $NO_3\;and\;NH_4$ were 6, 1 and 68, 50%, respectively. Watering levels of 20, 50 and 100 mL during the seedling growth resulted in 35, 120 and 8 mg of nodule formation and 33.6, 58.4 and $8.4\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$ of the nitrogenase activity, respectively. Water stress with 86% decrease of soil water content caused temporary wilting point of leaf and a complete disappearance of nitrogenase activity of nodules, though the water content and transpiration rate in plant were reduced to 90 and 53%, respectively.tively.

  • PDF