• Title/Summary/Keyword: 공력 하중 해석

Search Result 97, Processing Time 0.023 seconds

Spanwise Aerodynamic Loads along the Wind Turbine Blade (풍력터빈 블레이드상의 공력하중분포 해석)

  • Lee, Kyo-Yeol;Ryu, Ki-Wahn
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.61.2-61.2
    • /
    • 2011
  • The spanwise aerodynamic loads of the wind turbine blade are investigated numerically. The blade shape such as twist and chord length along the blade span is obtained from the procedure of aerodynamically optimal design. The rated tip speed ratio and the rated wind velocity are set to 7 and 12m/s respectively. The BEM method is applied to obtain both the aerodynamic performance of the wind turbine (Fig.1) and the spanwise aerodynamic loads along the blade span including Prandtl's tip loss factor. The maximum running power coefficient is occurred around 90% radial position from hub (Fig.2). The distributed aerodynamic loads along the blade span can be used for structure analysis.

  • PDF

Validation of the aeromechanics for hingeless rotor using geometrically exact beam model (기하학적 정밀 보 모델을 이용한 무힌지 로터 구조/공력 하중 검증)

  • Han-Yeol Ryu
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.24-32
    • /
    • 2023
  • This paper studied HART II in descending flight using rotorcraft analysis code based on geometrically exact beam (GEB) model. The present GEB model expressed by a mixed variational formulation could capture the geometrically nonlinear behavior of the blade without arbitrary assumptions. In previous results, correlation of airloads with structural moments for HART II was not as good as blade deflections. However, in present results, predictions of airloads and structural loads are fairly correlated with measured data.

Development of an Aerodynamic Performance Analysis Module for Rotorcraft Comprehensive Analysis Code (회전익기 통합해석프로그램을 위한 공력해석코드 개발)

  • Lee, Joon-Bae;Lee, Jae-Won;Yee, Kwan-Jung;Oh, Se-Jong;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.224-231
    • /
    • 2009
  • In this study, an aerodynamic performance analysis code has been developed as a part of rotorcraft comprehensive program. Airloads on rotor blades are calculated based on the blade element theory with look-up tables of aerodynamic coefficients of 2-D airfoils. In order to calculate rotor induced inflow, various inflow prediction methods such as linear inflow, dynamic inflow, prescribed wake and free wake model are integrated into the present module. The aerodynamic characteristics of each method are compared and validated against available experimental data such as Elliot's inflow distribution and sectional normal force coefficients of AH-1G.

Airloads and Structural Loads Analysis of LCH Rotor Using a Loose CFD/CSD Coupling (유체-구조 연계해석을 통한 소형민수헬기(LCH) 공력 및 구조하중 해석)

  • Lee, Da-Woon;Kim, Kiro;Yee, Kwan-Jung;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.489-498
    • /
    • 2019
  • The airloads and structural loads of Light Civil Helicopter (LCH) rotor are investigated using a loose CFD/CSD coupling. The structural dynamics model for LCH 5-bladed rotor cwith elastomeric bearing and inter-bladed damper is constructed using CAMRAD-II. Either isolated rotor or rotor-fuselage model is used to identify the effect of the fuselage on the aeromechanics behavior at a cruise speed of 0.28. The fuselage effect is shown to be marginal on the aeromechanics predictions of LCH rotor, though the effect can be non-negligible for the tail structure due to the prevailing root vortices strengthened by the fuselage upwash. A lifting-line based comprehensive analysis is also conducted to verify the CFD/CSD coupled analysis. The comparison study shows that the comprehensive analysis predictions are generally in good agreements with CFD/CSD coupled results. However, the predicted comprehensive analysis results underestimate peak-to-peak values of blade section airloads and elastic motions due to the limitation of unsteady aerodynamic predictions. Particularly, significant discrepancies appear in the structural loads with apparent phase differences.

Structural Stability Evaluation of Impeller in Resonant condition due to Diffuser vanes (디퓨저 베인에 의한 공진조건에서의 임펠러 구조 안정성 평가)

  • Kim, Yongse;Kong, Dongjae;Shin, Sangjoon;Im, Kangsoo;Park, Kihoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.877-880
    • /
    • 2017
  • Impeller blades in the centrifugal compressor are subjected to static loads due to the high-speed rotation and steady aerodynamic forces. At the same time, aerodynamic excitations by the interaction between the impeller and the diffuser vanes(DV) periodically excite the impeller blades in resonant conditions, which may lead to high cycle fatigue (HCF) and eventually result in failure of the blades. In order to predict the structural response accurately, the aerodynamic excitation and the major resonant conditions were predicted by performing the unsteady flow analysis and modal analysis using ANSYS. Next, a unidirectional forced vibration analysis was performed by using fluid-structure interaction (FSI) method, and the safety of HCF was evaluated based on the results.

  • PDF

Study on Design, Manufacturing and Test Evaluation using Composite Materials of Vertical Axis Wind Turbine Blade (수직축 풍력 블레이드의 복합재 적용 설계, 제작 및 시험 평가 연구)

  • Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.58-63
    • /
    • 2018
  • This work dealt with the design and manufacturing of composite blades of a vertical axis wind turbine system. In this work, aerodynamic and structural designs of sandwich composite blades for a vertical axis wind turbine system were performed. First, the aerodynamic and structural design requirements of the composite blades were investigated. After the structural design was complete, a structural analysis of the wind turbine blades was performed using the finite element analysis method. It was performed with the stress and displacement analysis at the applied load condition. A design modification for the structurally weak part was proposed as a result of the structural analysis. Through another structural analysis, it was confirmed that the final designed blade structure is safe.

A study on 2D/3D analysis for 2014 Inha Human Power Aircraft main spar (2014년 인하대학교 인력항공기 Main spar의 2차원/3차원의 해석 비교 및 설계초기단계 적용가능성 연구)

  • Lee, Ye-Ho;Yoon, Do-Hee
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.268-268
    • /
    • 2016
  • 기계적 장치의 도움 없이 오직 사람의 힘으로만 비행을 해야 하는 인간 동력 항공기는 높은 동력 효율 및 최소한의 무게를 지니며 고세장비(High Aspect Ratio)날개 특성을 가지고 있다. 따라서 공력 및 구조적 최적화가 필요하며 고세장비 날개 특성에 따른 대변위 해석이 필요하다. 비행가능한 특정 순항속도에서 3차원 날개에 작용하는 양력에 대해, Edison Solver(Educational program for finite element analysis (CASADSolver))를 이용하여 2차원 spar에 분포하중으로 적용하였을 때의 응력 분포 및 끝단 변위 분석하고자 한다. 또한, 2차원 spar에 일정한 간격으로 집중하중을 작용하였을 때 생기는 변위와 3차원 spar를 이용한 하중해석 결과의 변위를 비교하고자 한다. 위의 두 분석 결과로 비교적 계산자원이 많은 3차원 해석이 아닌 2차원 해석으로 인간 동력 항공기 날개 설계 초기단계에 적용가능한 지에 대해 비교한다.

  • PDF

Numerical Analysis of Aerodynamics Characteristics of Two Dimensional Airfoil Section with Elastic Flap (탄성 플랩을 갖는 2차원 날개 단면 공력 특성 전산해석)

  • Won, Chang-Hee;Lee, Joo-Yong;Lee, Sungsu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.39-46
    • /
    • 2014
  • This study presents computational analysis of aerodynamic characteristics of two-dimensional airfoil sections with elastic flap attached at the trailing edge. EDISON_CFD was utilized to simulate the incompressible turbulent flow around the foil and MIDAS_IT was employed to estimate the deflection of the flap under the pressure loading. Using iterative procedure, the terminal deflection was estimated and the resulting lift-drag ratio indicates that the favorable effect of the flap is expected within certain amount of angle of attack.

A Study on Structural Design and Analysis of Composite Fairing to Reduce Air Resistance (공기 저항력 저감을 위한 복합재 페어링 구조 설계 및 해석 연구)

  • Yonggyu, Lee;Hyunbum, Park
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.64-73
    • /
    • 2022
  • This study aimed to design a 3D fairing shape to reduce the air resistance of commercial vehicles. Rankine Half Body was applied to design the fairing shape, and the design was verified through aerodynamic analysis. Aerodynamic loads were calculated considering the speed conditions of commercial vehicles and gust conditions to ensure the structural safety of the fairing. A glass fibre/epoxy composite material was used to design a fairing structure that satisfied the safety factor 3. The structural safety of the lightest fairing was confirmed through structural analysis.

Aerothermoelastic Analysis of Cylindrical Piezolaminated Shells Based on Multi-field Layerwise Theory (다분야 층별 이론에 기초한 원통형 압전적층 쉘의 공력열탄성학적 해석)

  • Oh, Il-Kwon;Shin, Won-Ho;Lee, In
    • Composites Research
    • /
    • v.15 no.3
    • /
    • pp.52-61
    • /
    • 2002
  • For the aerothermoelastic analysis of cylindrical piezolaminated shells, geometrically nonlinear finite elements based on the multi-field layerwise theory hale been developed. Applying a Han Krumhaar's supersonic piston theory, supersonic flutter analyses are performed for the cylindrical piezolaminted shells subject to thermal stresses and deformations. The possibility to increase flutter boundary and reduce thermoelastic deformations of piezolaminated panels is examined using piezoelectric actuations. Results show that active piezoelectric actuations can effectively increase the critical aerodynamic pressure by retarding the coalescence of flutter modes and compensating thermal stresses.