• Title/Summary/Keyword: 공력 제어

Search Result 124, Processing Time 0.022 seconds

Development of Variable Guide Vane Actuator System for Testing of Aircraft Gas Turbine Engine (항공용 가스터빈 리그시험용 가변정익 구동시스템 개발)

  • Kim, Sun Je;Jeong, Chi Hoon;Ki, Taeseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.9-17
    • /
    • 2019
  • Variable guide vanes(VGVs) that consist of link mechanisms and an actuator system are required for an aircraft gas turbine engine to adjust the incidence angle of stator vanes. In this study, we developed a VGV actuator system for three-stage VGVs with two hydraulic actuators. The requirements for the actuator system were derived by analyzing the link mechanisms and air loads, and a hydraulic power-pack was developed based on these requirements. Through a load test using the actuator test-rig and the application of synchronizing control logic with proper control gains, the actuator system could be developed and verified.

Response of Torque Controller for a MW Wind Turbine under Turbulence Wind Speed (난류 풍속에 대한 MW급 풍력발전기의 토크 제어기 응답)

  • Lim, Chae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.173-180
    • /
    • 2017
  • The main objective of a torque controller below rated wind speed is to extract maximum power from the potential wind energy. To do this, the torque control method, which adjusts the torque magnitude and makes it proportional to the square of the generator speed, has been applied. However, this method makes the response slower as the wind turbines are getting larger in size with multi-MW capacities. In this paper, a torque control method that uses the nonlinear parameter of rotor speed for aerodynamic torque as a control gain is discussed to improve the response by adjusting an additional torque magnitude. The nonlinear parameter of the rotor speed could be calculated both online and offline. It is shown that the offline case is more practical and effective in producing power through the numerical simulation of a 2MW wind turbine by considering the real turbulence wind speed.

An Experimental Study of a Single Axis Seesaw Attitude Control Consisting of Motor and Propeller (모터와 프로펠러로 구성된 시소형 1축 자세 제어 실험에 관한 연구)

  • Kim, Jae-Nam;Roh, Min-Shik;Song, Jun-Beom;Song, Woo-Jin;Kang, Beom-Soo;Kim, Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • In this research, a single-axis attitude control test bed is developed, and simulation and tests experiments are performed, as a preliminary research of a quad-rotor aerial vehicle development. A single-axis test bed with seesaw configuration is manufactured using two motors and propellers, and the aerodynamic parameters are derived by thrust tests. The response of the system is estimated with Matlab/Simulink, and experiments are performed with attitude control computer and an attitude sensor onboard the test bed. Comparing the results of simulated and tested data, factors of steady-state errors during experiments are found, and performances of used attitude control algorithm and the control computer were verified. In these process, essential preliminary data for attitude control of a quad-rotor unmanned aerial vehicle were acquired.

Performance Test of a Jet vane type Thrust Vector Control System (제트 베인형 추력편향장치의 성능시험)

  • 신완순;이정민;이택상;박종호;김윤곤;이방업
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.75-82
    • /
    • 1999
  • Theoretical analysis and performance test of Jet vane type Thrust Vector Control(TVC) were conducted using supersonic cold-flow system. The use of TVC Systems an in particular jet vanes, are currently being researched for use in air launch, ship launch, underwater launch and high altitude maneuvering of tactical missiles and rockets. The necessity to generate control forces to rapidly change the course of the missile is frequently required when traditional, exterior aerodynamic surfaces are unable to produce these forces, when the flow over the control surface is insufficient. This situation can occur at launch, or high angles of attack of the control surfaces. Jet vanes peformed well at all altitudes and environmental conditions, and jet vanes are extremely effective at deflection angles up to as high as $30^{\circ}$, make them ideal for the launch and maneuver applications. In this study, performance test of supersonic cold-flow system and visualization of supersonic jet was conducted, and shape and deflection angle effect of two types of jet vanes are investigated.

  • PDF

A Study on Longitudinal Control Law in order to Improvement of T-50 Fine Tracking Performance (T-50 정밀추적 성능 향상을 위한 세로축 제어법칙에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Koh, Gi-Oak;Bae, Myung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.50-55
    • /
    • 2005
  • An advanced method of Relaxed Static Stability (RSS) is utilized for improving the aerodynamic performance of modern version supersonic jet fighter aircraft. The laws of flight control system utilize RSS criteria in both longitudinal and lateral-directional axes to achieve performance enhancements. Particularly, the design of longitudinal control laws for utilizing RSS methods greatly affects the performance of the aircraft in Air-to-Air Tracking and Air-to-Ground modes, which improves weapon delivery. In the area of Air-to-Air Tracking, the development of longitudinal control laws aids in the fine tracking and gross acquisition of other aircraft. This paper proposes that new concept of longitudinal control law introduce in order to improve fine tracking performance in air-to-air tracking maneuver. Result of HQS pilot simulation and flight test, fine tracking performance improve without degradation of gross acquisition when new concept of control law is applied.

Development of Torque simulator for the performance analysis of the 10kW wind turbine system (10kW 풍력발전기의 동작특성 분석을 위한 토크 시뮬레이터 개발)

  • Kim, Se-Yoon;Kim, Sung-Ho;Lee, Jong-Hee;Moon, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.579-585
    • /
    • 2014
  • 10kW wind turbine is widely studied in the field of renewable energy for the merits of easy installation to the confined area such as hill, park and urban areas. The performance of various electrical devices such as converter and inverter in the wind turbine system should be systematically analyzed for various wind speeds. However, it is impossible to apply these devices directly to practical wind turbine system for the safety of wind turbine system. Therefore, it is required to develop torque simulator which can generate corresponding torque according to its wind speed. In this work, 10kW torque simulator which consists of three phase torque control inverter, 3 phase induction motor and PMSG(Permanent Magnet Synchronous Generator) is developed.

A Study on the Development of Low-Altitude and Long-Endurance Solar-Powered UAV from Korea Aerospace University (2) - Flight Control and Guidance of Solar Powered UAV - (한국항공대학교 저고도 장기체공 태양광 무인기 개발에 관한 연구 (2) - 태양광 무인기 비행제어 및 유도항법 -)

  • Kim, Taerim;Kim, Doyoung;Jeong, Jaebaek;Moon, Seokmin;Kim, Yongrae;Bae, Jae-Sung;Park, Sanghyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.479-487
    • /
    • 2022
  • This paper presents the control and guidance algorithm of a KAU-SPUAV(Korea Aerospace University - Solar Powered Unmanned Aerial Vehicle) which is designed and developed in Korea Aerospace University. Aerodynamic coefficients are calculated using the vortex-lattice method and applied to the aircraft's six degrees of freedom equation. In addition, the thrust and torque coefficients of the propeller are calculated using the blade element theory. An altitude controller using thrust was used for longitudinal control of KAU-SPUAV to glide efficiently when it comes across the upwind. Also describes wind estimation technic for considering wind effect during flight. Finally, introduce some guidance laws for endurance, mission and coping with strong headwinds and autonomous landing.

Experimental verification of inverter's optimal controller for driving 150kW SPMSM of EGR blower of Green-ships (친환경 선박 EGR 블로워용 150kW SPMSM 구동 인버터 최적제어기의 실험적 검증)

  • Sehwan, Kim;Yeonwoo, Kim;Minjae, Kim;Uihyung, Yi;Sungwon, Lee
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.596-601
    • /
    • 2022
  • The application of the EGR system is increasing according to the recent trend of conversion to green-ships. EGR blower, one of the core parts of the EGR, consists of aerodynamic system and e-motor and inverter and etc. For the e-motor, a permanent magnet type synchronous motor with high energy density and excellent efficiency is applied recently. Small and medium-sized enterprises trying to develop the e-motors, however, for marine inverters mostly developed by global advanced companies due to the rigid classification certification and technical difficulties. One of disadvantage of universal inverters is that when optimal control fails, it is difficult to find the cause from user's point of view. Therefore, in this study, optimal controllers(Current vector contol and Tracking observer) for SPMSM for EGR blower was designed and verified to analyze the causes of failure of optimal control of universal inverter.

Numerical Investigation of the Lateral Jet Effect on the Aerodynamic Characteristics of the Missile: Part I. Jet Flow Condition Effect (측 추력 제트가 미사일의 공력특성에 미치는 영향에 관한 연구 : Part I. 제트 유동특성 영향)

  • Min, Byung-Young;Lee, Jae-Woo;Byun, Yung-Hwan;Hyun, Jae-Soo;Kim, Sang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.64-71
    • /
    • 2004
  • A computational study on the supersonic flow around the lateral jet controlled missile has been performed. For this purpose a three dimensional Navier-Stokes computer code(AADL3D) has been developed and case studies have been performed by comparing the normal force coefficient and the moment coefficient of a missile body for different jet flow conditions including jet pressure and jet Mach number. The results show different behavior of normal force and moment variation according to jet pressure variation and jet Mach number variation. From the detailed flow field analyses, it is verified that most of the normal force loss and the pitching moment generation are taken place at the low-pressure region behind the jet nozzle. Furthermore, it is shown that the pitching moment can be efficiently reduced by obtaining the lateral thrust through higher jet Mach number rather than through high jet pressure.

An Experiment Study on Sideslip Angle Effect of Lambda Wing Configuration (람다 날개 형상의 옆미끄럼각 효과에 대한 실험적 연구)

  • Shim, HoJoon;Park, Seung-O;Oh, Se-Yoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.224-231
    • /
    • 2015
  • An experimental study on aerodynamic coefficients of a lambda wing configuration was performed at the low speed wind tunnel of Agency for Defense Development. The main purpose of this study was to investigate the effects of sideslip angle on various aerodynamic coefficients. In the case of $0^{\circ}C$ sideslip angle, nose-up pitching moment rapidly increases at a specific angle of attack. This unstable pitching moment characteristic is referred to as pitch break or pitch up. As the sideslip angle increases, the pitch break is found to be generated at a higher angle of attack. Rolling moment is found to show similar behavior pattern to 'pitch break' style with angle of attack at non-zero sideslip angles. This trend gets severer at greater sideslip angles. Yawing moment also shows substantial variation of the slope and the unstable directional stability with sideslip angles at higher angles of attack. These characteristics of the three moments clearly implies the difficulty of the flight control which requires efficient control augmentation system.