• Title/Summary/Keyword: 공력 예측

Search Result 226, Processing Time 0.021 seconds

케이싱을 고려한 홴의 유동 및 소음해석 프로그램 응용

  • 이덕주;전완호;정기훈
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.5-14
    • /
    • 2001
  • 송풍기나 홴과 같은 유체기계의 소음은 최근 들어 사람들의 관심을 끌면서 많은 사회적 문제가 되고 있다. 이러한 문제는 유체기계가 제품의 구매요구를 결정할 뿐만 아니라 환경소음의 규제와도 관계가 깊다. 이런 홴이나 송풍기 소음은 축 편심에 의한 진동 소음과, 유동에 의한 유동소음이 있는데 대형 송풍기는 진동 소음과 유동 소음이 동시에 존재하지만 중소형 송풍기는 유동 소음이 우세하다. 유동 소음은 공력음향학이라는 학문의 한 분야로 유동에 대한 정보가 있어야 정확한 소음원을 파악하고, 특성도 예측이 가능하다. 유동과의 강한 연관성 때문에 지금까지 송풍기의 유동 소음에 대한 연구가 미약하였다.(중략)

  • PDF

Aerodynamic Analysis of Smart UAV with CFD (CFD를 이용한 스마트 문인기의 공력특성 분석)

  • Kim C. W.;Chung J. D.;Lee J. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.105-109
    • /
    • 2004
  • CFD simulation for Smart-UAV(TR-E2Sl) is performed to analyze its aerodynamic characteristics. Base geometry and several cases, decided by control surfaces being deflected, are simulated. To obtain the better lift characteristics, the elevator should be deflected between 10o and 20o with the incidence angle of the wing 1o.

  • PDF

High Speed Rail : Prediction of Aerodynamic Noise (고속철도소음예측 : 공력소음의 속도민감성)

  • Kim, Jeung-Tae;Kim, Jung-Soo;Kim, Suk-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.101-106
    • /
    • 2007
  • Noise pollution from a high speed train has been a serious social issue nowadays. Especially when a train speed exceeds 300km/hr, an aerodynamic noise level has been known to be increased based on 4-6th power laws. In this paper, a simple approach to evaluate the sensitivity effect on noise due to the speed change has been examination.

  • PDF

CFD Study on Aerodynamic Characteristics of Frisbee (II) (CFD를 이용한 Frisbee의 공력 특성에 대한 고찰(II))

  • Kim C. W.;Chang B. H.;Lee J. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.114-118
    • /
    • 2005
  • CFD simulation was peformed for 2D and 3D flying and rotating frisbees. Multiple reference method(MRF) was utilized to consider the rotation of 3D model. Geometry change of 2D model shows dramatic increase of lift, but 3D simulation results for geometry change show decrease of lift and drag. Ground effect increases the lift of the frisbee being close to ground.

  • PDF

PREDICTION OF AERODYNAMIC HEATING ON A SUPERSONIC MISSILE (초음속 유도탄 공력가열 예측)

  • Sun, Chul;Ahn, C.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.134-137
    • /
    • 2007
  • Aero-Heating phenomenon is one of the severe problems occurring in high speed missile flight. in the high speed flight, not only stagnation point but also aft body parts encounter high temperature related structural problems. But the phenomenon is not easy to predict accurately because unsteady calculation according to a flight trajectory is needed, and takes much time. In this Paper, a fast and precise scheme is introduced, which calculates heat flow and temperature by simple pressure field prediction on a missile.

  • PDF

Aerodynamic Design Program for Centrifugal/Mixed-flow Compressors - Part I : Meanline Design and Performance Prediction - (원심/사류압축기의 공력설계 프로그램 개발 - 제1부 : 평균유선 설계/성능해석 -)

  • Oh, Jong-Sik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.457-463
    • /
    • 2003
  • A general program of meanline design and/or performance prediction for centrifugal/mixed-flow compressors is successfully commercialized using various empirical loss models. 4 types of diffusers, 3 types of exit elements, shrouded/unshrouded impellers and real gas option are included in the program capabilities. Total 16 cases of benchmark test results proved its reliability to be effectively utilized in the development processes.

  • PDF

Numerical Analyses and Wind Tunnel Tests of a Propeller for the MAV Propulsion (초소형 무인기 추진용 프로펠러의 전산해석 및 풍동시험)

  • Cho, Lee-Sang;Lee, Sea-Wook;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.955-965
    • /
    • 2010
  • The MH-75 propeller for the MAV propulsion is designed using a free vortex design method which considers design parameters such as the hub-tip ratio, the twist angle distribution, the maximum camber location and the chord length of the propeller blade. Aerodynamic characteristics of the MH-75 propeller are predicted by changing the flight speed using the frequency domain panel method. And, the thrust characteristics of the MH-75 propeller are measured using the balance system of the subsonic wind tunnel for the validation of numerical results. The performance characteristics of the MH-75 propeller satisfied with design requirements. Numerical results of the MH-75, which are predicted by the frequency domain panel method, are more agree with experimental results compare with XFOIL.

Development and Validations of the Aerodynamic Analysis Program of Multi-Rotors by Using a Free-Wake Method (자유후류 기법을 이용한 다중로터 공력해석 프로그램의 개발 및 검증)

  • Park, Sang-Gyoo;Lee, Jae-Won;Lee, Sang-Il;Oh, Se-Jong;Yee, Kwang-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.859-867
    • /
    • 2007
  • The objective of this study is to develop and validate a numerical method which can handle the multi-rotor aerodynamic characteristics. For the purpose of power estimation, table look-up method is implemented to the existing unsteady panel code that is coupled with a time-marching free wake model. Also, the Reynolds number scaling is implemented for the application to various regions of Reynolds number. The computed results are validated against the available experimental data for coaxial and tandem rotors. In the validation case for the coaxial rotor, more accurate result is acquired when the thickness effect is considered. The wake instability problem occurs at a particular separation distance between the rotors for tandem rotors. The wake instability is avoided by setting the single-rotor wake geometry as the initial wake geometry for the multi-rotor analysis. The estimated result for rotor separation effect is compared with the result of the momentum theory.

Separation Analysis of a Store with Deployable Wings (날개 전개가 가능한 무장의 분리 특성해석)

  • Kim, Byeong-Kyoo;Kim, Sang-Jin;Kang, In-Mo;Kim, Myung-Seong;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.381-389
    • /
    • 2007
  • 6-DOF simulation program is developed in order to increase the efficiency of the store separation analysis. This S/W is much faster than a method based on CFD(Computational Fluid Dynamics) technology, and allows the simulation of stores with fixed shape as well as with extensible wings, because it uses aerodynamic databases which are prepared beforehand. In this paper, aerodynamic databases of stores are obtained with MSAP(Multi-body Separation Analysis Program), and unsteady damping coefficients are modeled with Missile Datcom. These databases and the 6-DOF simulation program are used to predict the trajectory of an external store, while its wings are being deployed. The analysis results indicate that the safe separations of the store can be achieved not only with the wing fixed but with the wings being deployed.

Efficient Prediction of Aerodynamic Heating of a High Speed Aircraft for IR Signature Analysis (적외선 신호 분석을 위한 고속 항공기의 공력가열에 관한 효율적 예측)

  • Lee, Ji-Hyun;Chae, Jun-Hyeok;Ha, Nam-Koo;Kim, Dong-Geon;Jang, Hyun-Sung;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.768-778
    • /
    • 2019
  • The ability to calculate aerodynamic heating and surface temperature is essential to ensure proper design of aircraft components in high speed flight. In this study, various empirical formulas for efficiently calculating aerodynamic heating of aircraft were first analyzed. A simple computational code based on empirical formulas was developed and then compared with commercial codes; ANSYS FLUENT based on the Navier-Stokes-Fourier equation, and ThermoAnalytics MUSES based on an empirical formula. The code was found to agree well with the results of FLUENT in the wall and stagnation point temperatures. It also showed excellent agreement with MUSES, within 1% and 5% in temperature and heat flux, respectively.