• Title/Summary/Keyword: 공력 예측

Search Result 226, Processing Time 0.041 seconds

On the Effect of Air-Simulated Side-Jets on the Aerodynamic Characteristics of a Missile by Multi-Fidelity Modeling (다충실도 모형화를 통한 공기로 모사된 측방제트가 유도무기의 공력특성에 미치는 영향 연구)

  • Kang, Shinseong;Kang, Dayoung;Lee, Kyunghoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.95-106
    • /
    • 2021
  • Side-jets enable the immediate maneuver of a missile compared to control surfaces; however, they may cause adverse effects on aerodynamic coefficients, for they interfere with freestream. To find out the impact of side-jets on aerodynamic coefficients, we simulate side-jets as air gas and utilize multi-fidelity models to evaluate differences between aerodynamic coefficients obtained with and without side-jets. We computed differences in aerodynamic coefficients to investigate side-jet effects for the changes of a Mach number, a bank angle, and an angle of attack. As a result, asymmetrically developed side-jets affect the longitudinal force and moment coefficients, and the lateral force and moment coefficients drastically change in-between -30 and 30 degrees of bank angles. In contrast, side-jets hardly influence the axial force coefficients. As for the axial moment coefficient, we could not determine the side-jet effect due to a lack of aerodynamic coefficient samples in the Mach number. All in all, we confirm that side-jets lead to the change of a missile attitude as they considerably vary the longitudinal and lateral aerodynamic coefficients.

Validation of Rotor Aeroacoustic Noise in Hovering and Low Speed Descent Flight (정지 및 저속 하강 비행하는 헬리콥터 로터의 소음 해석 및 검증)

  • You, Younghyun;Jung, Sung Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.516-525
    • /
    • 2015
  • In this paper, the acoustic pressure of a helicopter rotor in hovering and low speed descent flight is predicted and compared with experimental data. Ffowcs Williams-Hawkings equation is used to predict the acoustic pressure. Two different wind tunnel test data are used to validate the predicted results. Boeing 360 model rotor test results are used for the low-frequency noise in hover, and HART II test results are employed for the mid-frequency noise, especially BVI noise, in low speed descent flight. A simple free-wake model as well as the state-of-the-art CFD/CSD coupling method are adopted to perform the analysis. Numerical results show good agreement against the measured data for both low-frequency and mid-frequency harmonic noise signal. The noise carpet results predicted using the FFT(Fast Fourier Transform) shows also reasonable correlation with the measured data.

The Noise Analysis of Cooling Fan of Heavy Vehicle with Unsteady Flow (비정상 유동을 고려한 중장비의 냉각팬 소음 해석)

  • 정춘면;나선욱;이덕주;박승철;강종민
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.588-593
    • /
    • 1997
  • 본 연구에서는 이전의 연구들이 주로 정상상태의 공력만을 이용하여 소음을 예측하였으나 통상 팬은 단독으로 존재하지 않고 열교환기(radiator)와 같은 주의 물체와 함께 있으므로 이에 따르는 상호작용으로 인한 비정상 유동을 고려하여 소음을 예측하였다.

  • PDF

Numerical and experimental analysis of aerodynamics and aeroacoustics of high-speed train using compressible Large Eddy Simulation (압축성 대와류모사를 이용한 고속열차의 공력 및 공력소음의 수치적/실험적 분석)

  • Kwongi Lee;Cheolung Cheong;Jaehwan Kim;Minseung Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.95-102
    • /
    • 2024
  • Due to technological advances, the cruising speed of high-speed trains is increasing, and aerodynamic noise generated from the flow outside the train has been an important consideration in the design stage. To accurately predict the flow-induced noise, high-resolution generation of sound sources in the near field and low-dissipation of sound propagation in the far field are required. This should be accompanied by a numerical grid and time resolution that can properly consider both temporal and spatial scales for each component of the real high-speed train. To overcome these challenges, this research simultaneously calculates the external flow and acoustic fields of five high-speed train cars of real-scale and at operational running speeds using a threedimensional unsteady Large Eddy Simulation technique. To verify the numerical analysis, the measurements of the wall pressure fluctuation and numerical results are compared. The Ffowcs Williams and Hawking equation is used to predict the acoustic power radiated from the high-speed train. This research is expected to contribute to noise reduction based on the analysis of the aerodynamic noise generation mechanism of high-speed trains.

Prediction for Rotor Aerodynamics of Quadcopter Type Unmanned Aerial Vehicle Considering Gust and Flight Conditions (비행 조건의 영향을 고려한 쿼드콥터형 무인비행체의 로터 공력 특성 예측)

  • Park, SunHoo;Eun, WonJong;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.833-844
    • /
    • 2018
  • This paper aims to predict the aerodynamic characteristics of individual rotor for the gust and flight conditions. Transformation procedure into the wind frame is conducted to analyze the gust. Hover, forward, and climb flight conditions of an individual rotor are analyzed using the blade element momentum theory (BEMT) considering the rigid blade flapping motion. XFOIL is used to derive aerodynamic results. Validation for hover, forward flight, and climb conditions are conducted using the present BEMT. In addition, a static experimental environment is constructed. The experimental results and the present BEMT are compared and verified.

CFD Analysis of Aerodynamic Characteristics of a BWB UCAV configuration with Transition effect (천이효과를 고려한 BWB UCAV 형상의 공력 특성 전산해석)

  • Jo, Young-Hee;Chang, Kyoungsik;Sheen, Dong-Jin;Park, Soo Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.535-543
    • /
    • 2014
  • A computational simulation for a nonslender BWB UCAV configuration with rounded leading edge and span of 1.0m was performed to analyze its aerodynamic characteristics. The freestream is 50m/s over -4 to 26 degree A.o.A.s. Reynolds number based on the mean chord length is $1.25{\times}10^6$. 3D multi block hexahedral grids are used which allow good grid quality and ease to capture boundary layer. ${\gamma}-Re_{\theta}$ model as well as $k-{\omega}$ SST model is employed to assess the effect of transition for flow behavior. Drag and lift of the UCAV were well predicted while $C_M$ is under predicted at high angle of attacks and influenced by the turbulence models strongly. After assessing pressure distribution, skin friction lines and velocity field around the UCAV configuration, it was found that transition effect should be considered to enhance the prediction of aerodynamic behavior by a vortical flowfield.