• Title/Summary/Keyword: 공력 설계

Search Result 478, Processing Time 0.023 seconds

A Study on Aerodynamic Analysis and Starting Simulation for Horizontal Axis Wind Turbine Blade (수평축 풍력발전용 회전날개의 공력성능 해석 및 시동특성 모사에 관한 연구)

  • 공창덕;방조혁;김학봉
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.40-46
    • /
    • 1999
  • Aerodynamic performance and starting characteristic of wind turbine blade are important factors that determine the whole system as rated power, operating method, etc. Therefore, starting characteristic according to aerodynamic performance, wind speed and blade pitch angle should be examined while wind turbine blade is designed. In this study, the aerodynamic analysis program of 750㎾ class horizontal axis wind turbine blade was developed and to certify this program, the aerodynamic performance of the commercialized blade was analyzed with it. The analysis result was corresponding to the value presented from manufacturer. And the starting analysis program was developed on the basis of the developed aerodynamic analysis program and starting analysis was performed. As a result, it was confirmed that variable speed operation and variable pitch control are profitable to wind turbine used in low wind speed as our country.

  • PDF

Numerical Investigation of Geometrical Design Variables for Improvement of Aerodynamic Performance of Supersonic Impulse Turbine (초음속 충동형 터빈익형의 공력성능 향상을 위한 기하학적 설계변수 수치연구)

  • Lee,Eun-Seok;Kim,Jin-Han;Jo,Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.99-106
    • /
    • 2003
  • Geometrical design variables are numerically investigated to improve aerodynamic performance of the supersonic impulse turbine of a turbopump in a liquid rocket engine. Aerodynamic redesign was performed for maximization of the blade power. Four design variables considered are blade angle, blade thickness and radii of upper and lower arc blade with appropriate constraints. A fast Navier-Stokes solver was developed and Chien's k-$\varepsilon$ turbulence modelling was used for turbulence closure. In initial shape, a flow separation was found in the middle of blade chord. However, it disappeared in final shape via its geometrical design variable change. About 3.2 percent of blade power was increased from this research.

Aerodynamic Design of SUAV Flaperon (스마트무인기 플래퍼론 공력설계)

  • Choi, Seong-Wook;Kim, Jai-Moo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.26-33
    • /
    • 2005
  • Smart UAV, which adopting tiltrotor aircraft concept, requires vertical take-off and landing, long endurance and high speed capability. These contradictable flight performances are hard to meet unless the operation of flap system which should reveal optimal performance for each flight mode. In order to design SUAV flaperon satisfying the three performance requirements, various configurations are generated and their aerodynamic performances are analyzed using numerical flow computations around flap systems. Considering aerodynamic performance and structural simplicity, a final flap configuration is selected and the performance is validated through the wind tunnel testing for 40% scale model.

Aerodynamic Design of EAV Propeller using a Multi-Level Design Optimization Framework (다단 최적 설계 프레임워크를 활용한 전기추진 항공기 프로펠러 공력 최적 설계)

  • Kwon, Hyung-Il;Yi, Seul-Gi;Choi, Seongim;Kim, Keunbae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.173-184
    • /
    • 2013
  • A multi-level design optimization framework for aerodynamic design of rotary wing such as propeller and helicopter rotor blades is presented in this study. Strategy of the proposed framework is to enhance aerodynamic performance by sequentially applying the planform and sectional design optimization. In the first level of a planform design, we used a genetic algorithm and blade element momentum theory (BEMT) based on two-dimensional aerodynamic database to find optimal planform variables. After an initial planform design, local flow conditions of blade sections are analyzed using high-fidelity CFD methods. During the next level, a sectional design optimization is conducted using two dimensional Navier-Stokes analysis and a gradient based optimization algorithm. When optimal airfoil shape is determined at the several spanwise locations, a planform design is performed again. Through this iterative design process, not only an optimal flow condition but also an optimal shape of an EAV propeller blade is obtained. To validate the optimized propeller-blade design, it is tested in wind-tunnel facility with different flow conditions. An efficiency, which is slightly less than the expected improvement of 7% predicted by our proposed design framework but is still satisfactory to enhance the aerodynamic performance of EAV system.

Aerodynamic Design of a Canard Controlled 2D Course Correction Fuze for Smart Munition (카나드 기반의 지능탄 조종 장치 공력설계)

  • Park, Ji-Hwan;Bae, Ju-Hyeon;Song, Min-Sup;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.187-194
    • /
    • 2015
  • Course correction munition is a smart projectile which improves its accuracy by the control mechanism equipped in the fuze section with canard. In this paper, various aerodynamic configurations of the fuze section were analysed by utilizing a semi-empirical method and a CFD method. A final canard configuration showing the least drag was then determined. During the CFD simulation, it was found that the k-${\omega}$ SST turbulence model combined with O-type grid base is suitable for the prediction of the base drag. Finally, the aerodynamic characteristics of the smart munition and the change of drag due to the canard installation were analysed.

Aerodynamic Design Optimization of Airfoils for WIG Craft Using Response Surface Method (반응표면법을 이용한 지면효과익기 익형의 공력 설계최적화)

  • Kim, Yang-Joon;Joh, Chang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.18-27
    • /
    • 2005
  • Airfoils with improved longitudinal static stability were designed for a WIG craft through aerodynamic design optimization. The response surface method is coupled with NURBS-based shape functions and Navier-Stokes flow analysis. The procedure runs in the network-distributed design framework of commercial-code based automated design capability to enhance computational efficiency and robustness.Lift maximization design maintaining similar static margin to a DHMTU airfoil successfully produced a new airfoil shape characterized by pronounced front-loading and the well-known reflexed aft-camber line. Another airfoil design of lower variation in pitching moment during take-off showed weakened front-loaded characteristics and hence decreased lift slightly. Investigations using the present design methodology on an existing optimization result based on potential flow analysis and NACA-type geometry generation demonstrated significance of carrying various geometry generations and more realistic flow analysis with optimization.

An efficient method for fluid/structure interaction analysis considering nonlinear structural behavior (비선형 구조 해석과 공력 해석의 효율적인 연계 알고리즘에 대한 연구)

  • Kim, Euiyoung;Chang, Seongmin;Lee, Dongho;Cho, Maenghyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.957-962
    • /
    • 2012
  • Fluid/structure interaction (FSI) analysis is necessary to predict the response of a system in which aerodynamic pressure causes deformation of the structure, and vice versa. In dealing with a nonlinear behavior of the structure, however, a simple iterative algorithm of aerodynamic analysis with structural analysis yields no accurate results since aerodynamic pressure need to be changed in accordance with the deformation of structures. In this study, we explore an efficient and accurate method for integrating FSI analysis into structural nonlinear systems. During the course of nonlinear structural analysis, loading conditions are periodically updated by aerodynamic analysis. The accuracy and efficiency of the method is demonstrated with a high-aspect-ratio flexible wing of Global Hawk.

Rapid Estimation of the Aerodynamic Coefficients of a Missile via Co-Kriging (코크리깅을 활용한 신속한 유도무기 공력계수 추정)

  • Kang, Shinseong;Lee, Kyunghoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.13-21
    • /
    • 2020
  • Surrogate models have been used for the rapid estimation of six-DOF aerodynamic coefficients in the context of the design and control of a missile. For this end, we may generate highly accurate surrogate models with a multitude of aerodynamic data obtained from wind tunnel tests (WTTs); however, this approach is time-consuming and expensive. Thus, we aim to swiftly predict aerodynamic coefficients via co-Kriging using a few WTT data along with plenty of computational fluid dynamics (CFD) data. To demonstrate the excellence of co-Kriging models based on both WTT and CFD data, we first generated two surrogate models: co-Kriging models with CFD data and Kriging models without the CFD data. Afterwards, we carried out numerical validation and examined predictive trends to compare the two different surrogate models. As a result, we found that the co-Kriging models produced more accurate aerodynamic coefficients than the Kriging models thanks to the assistance of CFD data.

Aerodynamic noise reduction of fan motor unit of cordless vacuum cleaner by optimal designing of splitter blades for impeller (임펠라 스플리터 날개 최적 설계를 통한 무선진공청소기 팬 모터 단품의 공력 소음 저감)

  • Kim, Kunwoo;Ryu, Seo-Yoon;Cheong, Cheolung;Seo, Seongjin;Jang, Cheolmin;Seol, Hanshin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.524-532
    • /
    • 2020
  • In this study, noise radiated from a high-speed fan-motor unit for a cordless vacuum cleaner is reduced by designing splitter blades on the existing impeller. First of all, in order to investigate the flow field through a fan-motor unit, especially impeller, the unsteady incompressible Reynolds-Averaged Navier-Stokes (RANS) equations are numerically solved by using computational fluid dynamic technique. With predicted flow field results as input, the Ffowcs Williams-Hawkings (FW-H) integral equation is solved to predict aerodynamic noise radiated from the impeller. The validity of the numerical methods is confirmed by comparing the predicted sound pressure spectrum with the measured one. Further analysis of the predicted flow field shows that the strong vortex is formed between the impeller blades. As the vortex induces the loss of the flow field and acts as an aerodynamic noise source, supplementary splitter blades are designed to the existing impeller to suppress the identified vortex. The length and position of splitter are selected as design factors and the effect of each design factor on aerodynamic noise is numerically analyzed by using the Taguchi method. From this results, the optimum location and length of splitter for minimum radiated noise is determined. The finally selected design shows lower noise than the existing one.

Conceptual Design and Study on the Performance Enhancement of Tilt Rotor UAV for Disaster and Policing Operation (재난치안용 틸트로터 무인기 개념설계 및 성능 향상 연구)

  • Kim, Myung Jae;Lee, Myeong Kyu
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.40-46
    • /
    • 2021
  • In this study, an aerodynamic configuration design and study on performance enhancement of a tilt-rotor UAV were conducted for improving mission capabilities compared to multi-copter type UAV, MC-1/2/3 developed for disaster and policing operation. To improve performance, a new TR5X configuration was developed by modifying the fuselage and tail shape of TR60 UAV and additionally attaching an extended wing to the nacelle. Aerodynamic performances of TR60 and TR5X were compared through computational fluid dynamics (CFD) analysis. In addition, flight performance analysis of full aircraft was conducted. Results showed that main performance requirements of TR5X were satisfied.