• Title/Summary/Keyword: 공력 설계

Search Result 478, Processing Time 0.02 seconds

차세대 로터 블레이드 형상정의 및 공력소음 해석

  • Yee, Kwan-Jung;Hwang, Chang-Jeon;Joo, Gene
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.35-43
    • /
    • 2003
  • In this study, a rotor planform shape with high performance and low noise has been designed and its aerodynamic and aeroacoustic characteristics are analysed. First of all, rotor blade planform with low noise characteristics, has been designed based on the paddle-shape blade by applying vane-tip concept. Finally, noise characteristics of the designed next-generation rotor blade have been investigated and the results are compared with those of BERP blade.

  • PDF

Study of Aerodynamic Design Optimization Using Genetic Algorithm (유전 알고리즘을 이용한 공력 형상 최적화 연구)

  • Kim S. W.;Kwon J. H.
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.10-18
    • /
    • 2001
  • Genetic Algorithm(GA) is applied to aerodynamic shape optimization and demonstrated its merits in global searching ability and the independency of differentiability. However, applications of GA are limited due to slow convergence rate, premature termination, and high computing costs. The present aerodynamic designs such as wing shape optimizations using GA have seldom been applied because of high computing costs. This paper has two objects; improvement of the efficiency of GA and application of GA into aerodynamic shape optimization for 2D and 3D wings. The study indicates that GA can be applied to aerodynamic design and its performance is comparable to traditional design methods.

  • PDF

DEVELOPMENT OF AERODYNAMIC SHAPE OPTIMIZATION TOOLS FOR MULTIPLE-BODY AIRCRAFT GEOMETRIES OVER TRANSONIC TURBULENT FLow REGIME (천음속 난류 유동장에서의 다중체 항공기 형상의 공력 설계 도구의 개발)

  • Lee, B.J.;Lee, J.S.;Yim, J.W.;Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.100-110
    • /
    • 2007
  • A new design approach for a delicate treatment of complex geometries such as a wing/body configuration is arranged using overset mesh technique under large scale computing environment for turbulent viscous flow. Various pre- and post-processing techniques which are required of overset flow analysis and sensitivity analysis codes are discussed for design optimization problems based on gradient based optimization method (GBOM). The overset flow analysis code is validated by comparing with the experimental data of a wing/body configuration (DLR-F4) from the 1st Drag Prediction Workshop (DPW-I). In order to examine the applicability of the present design tools, careful design works for the drag minimization problem of a wing/body configuration are carried out by using the developed aerodynamic shape optimization tools for the viscous flow over multiple-body aircraft geometries.

  • PDF

AERODYNAMIC DESIGN OF A VANE TYPE MULTI-FUNCTION AIR DATA SENSOR (베인형 다기능 대기 자료 센서의 공력 설계)

  • Park, Y.M.;Choi, I.H.;Lee, Y.G.;Kwon, K.J.;Kim, S.C;Hwang, I.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.43-49
    • /
    • 2010
  • Aerodynamic design of the vane type multi-function probe was tried by using CFD and wind tunnel test for the MALE UAV and small business jets. The present multi-function probe can measure total pressure, static pressure and angle of attack by using rotating vane. Therefore major performances are determined by aerodynamic characteristics of vane. In oder to design the sensor compatible to the requirement, aerodynamic characteristics of sensors was investigated by using CFD and dynamic response analysis was also performed for trasient performance. The final aerodynamic performance was measured by the wind tunnel test at Aeorsonic and the results successfully used for the design of vane type multi-function air data sensor.

  • PDF

AERODYNAMIC DESIGN OF A MULTI-FUNCTION AIR DATA SENSOR BY USING CFD AND WIND TUNNEL TEST (전산해석 및 풍동시험을 이용한 다기능 대기 자료 센서의 공력 설계)

  • Park, Y.M.;Choi, I.H.;Lee, Y.G.;Kwon, K.J.;Kim, S.C.;Hwang, I.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.32-38
    • /
    • 2010
  • Aerodynamic design of the vane type multi-function probe was tried by using CFD and wind tunnel test for the MALE UAV and small business jets. The present multi-function probe can measure total pressure, static pressure and angle of attack by using rotating vane. Therefore, major performances are determined by aerodynamic characteristics of vane. In order to design the sensor compatible to the requirement, aerodynamic characteristics of sensors were investigated by using CFD and dynamic response analysis was also performed for transient performance. The final aerodynamic performance was measured by the wind tunnel test at Aerosonic and the results were compared with the present design. The results showed that the aerodynamic design using the CFD can be successfully used for the design of vane type multi-function air data sensor.

AERODYNAMIC DESIGN AND NUMERICAL ANALYSIS OF AN SMALL SIZE AXIAL AIR TURBINE (소형 축류 공압 터빈 공력 설계 및 수치 해석)

  • Park, S.Y.;Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.567-571
    • /
    • 2011
  • Air Starter motors are used for the start of medium-speed diesel engine. One of the main part of air starting motors is the axial turbine stage. In this study, design of 1-stage axial type turbine for 14kw class air starter motors has been performed. The turbine blade was designed based on mean-line analysis. 1-D design calculation and numerical analysis with CFD were conducted iteratively. The validation between 1-D design method and numerical analysis for axial clearance has been performed. It revealed that there is optimum axial clearance of turbine design.

  • PDF

AERODYNAMIC DESIGN AND PERFORMANCE PREDICTION OF ROTOR BLADES IN A SINGLE-STAGE AXIAL FAN USING CFD METHODS (전산해석기법에 의한 단단 축류팬 동익의 공력설계 및 성능 예측)

  • Kim, E.S.;Chung, H.T.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.93-98
    • /
    • 2014
  • In the present study, CFD methods are applied in the design procedure of rotor blades in a axial-flow fan and the aerodynamic performances are predicted. The blade profiles initially determined by the free vortex method and empirical formula are modified to match the target value of the rotor work load through the analysis of 3D Navier-Stokes solver. The corrected shapes of the rotor blade showed the increase of the efficiency and the pressure simultaneously.

The Aerodynamic Shape Optimization with Trust Region Methods (Trust Region 기법을 이용한 공력 형상 최적설계)

  • Lee, Jae-Hun;Jung, Kyung-Jin;Kwon, Jang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.130-133
    • /
    • 2008
  • In this paper the trust region method is studied and applied in aerodynamic shape optimization. The trust region method is a gradient-based optimization method, but it is not as popular as other methods in engineering computations. Its theory will be explained for unconstrained optimization problems and a trust region subproblem will be solved with the dogleg method. After verifying the trust region method with analytical test problems, it is applied to aerodynamic shape design optimization and the performance of airfoil is improved successfully.

  • PDF

High Speed Wind Tunnel Test on the Aerodynamic Load Characteristics of Rocket Nozzle (로켓 노즐 공력하중 특성에 대한 고속 풍동시험)

  • Ra, Seung-Ho;Ok, Ho-Nam;Kim, In-Sun;Choi, Seong-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.35-40
    • /
    • 2004
  • The high-speed wind tunnel test of rocket model was performed to investigate the effect of skirt configuration on aerodynamic load characteristics of nozzle. Test parameters were the length and diffusing angle of skirt. Test results showed that the gimbals actuator power could be reduced to 1/10 of that without skirt. The normalized test result was proposed to be used as database for skirt design.

Aerodynamic Design of the Axial Fan (축류 송풍기의 공력학적 설계)

  • Sohn, Sang-Bum;Joo, Won-Gu;Cho, Kang-Rae;Nam, Hyung-Baik;Yoon, In-Kyu;Nam, Leem-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.22-28
    • /
    • 1999
  • In this study, a preliminary design method of the axial fan was systematically established based on the two-dimensional cascade theory. Flow deviation, lift coefficient, distribution of velocity and pressure coefficient on blade surfaces were predicted by an inviscid flow theory of Martensen method, which was also applied to select an airfoil for required performance in the present design process. The aerodynamic performance of designed blades can be predicted quickly and reasonably by using the through-flow calculation method in the preliminary design process. It would be recommendable to adopt three-dimensional viscous flow calculation at the final design refinement stage.

  • PDF