• Title/Summary/Keyword: 공력음향

Search Result 108, Processing Time 0.019 seconds

An Analysis of the Flow and Sound Field of a Ducted Axial Fan (덕트가 있는 축류홴의 유동 및 음향장 해석)

  • Jeon, Wan Ho;Chung, Ki Hoon;Lee, Duck Joo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.2 s.7
    • /
    • pp.15-23
    • /
    • 2000
  • The present work describes the prediction method for the unsteady flow field and the acoustic pressure field of a ducted axial fan. The prediction method is comprised of time-marching free-wake method, acoustic analogy, and the Kirchhoff-Helmholtz BEM. The predicted sound signal of a rotor is similar to the experiment one. We assume that the rotor rotates with a constant angular velocity and the flow field around the rotor is incompressible and inviscid. Then, a time-marching free-wake method is used to model the fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The newly developed Helmholtz-Kirchhoff BEM lot thin body is used to calculate tile sound field of the ducted fan. The ducted fan with 6 blades is analysed and the sound field around the duct is calculated.

  • PDF

Analysis of flow characteristics around the sunroof opening variation with sunroof deflector angle (썬루프 디플렉터 각도에 따른 썬루프 개구부 주변 유동 특성 연구)

  • Lee, Sung Won;Shin, Seongryong;Choi, Eui Sung;Yi, Juwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.285-291
    • /
    • 2018
  • In the present study, flow characteristics and wind noises around the sunroof opening are analyzed variation with panoramic sunroof deflector angle. A mesh deflector is attached to reduce wind noise while a car is driving with the panoramic sunroof opening. A new forward inclined type deflector was invented to improve wind noise. The effect of this new concept of mesh deflector on the open-panoramic flow characteristics and wind noises were studied with CAT (Computer Aided Test) and wind tunnel test, which shows the reduction of open-panoramic wind noises such as sunroof buffeting, sunroof booming, and turbulent noise. Therefore, the forward inclined type deflector can efficiently improve wind noise with the same production cost.

Aero-acoustic Performance Analysis Method of Regenerative Blower (재생형 송풍기의 공력음향학적 성능 해석 방법)

  • Lee, Chan;Kil, Hyun Gwon;Kim, Gang Chun;Kim, Jun Gon;Ma, Jae Hyun;Chung, Kyung Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.2
    • /
    • pp.15-20
    • /
    • 2013
  • An aero-acoustic performance analysis method of regenerative blower is developed as one of the FANDAS codes. The aerodynamic performance of regenerative blower is predicted by using momentum exchange theory coupled with pressure loss and leakage flow models. Based on the performance prediction results, the noise level and spectrum of regenerative blower are predicted by discrete frequency and broadband noise models. The combination of the performance and the noise prediction methods gives aero-acoustic performance map and noise spectrum analysis results, which are well-agreed with the actual measurement results within a few percent relative error.

Design Method of the Sirocco Fan Considering Aeroacoustic Performance Characteristics (공력음향학적 특성을 고려한 시로코 팬의 설계 방법)

  • Lee, Chan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.59-64
    • /
    • 2010
  • A design method of Sirocco fan is developed for constructing 3-D impeller and scroll geometries, and for predicting both the aerodynamic performance and the noise characteristics of the designed fan. The aerodynamic blading design of fan is conducted by blade angle, camber line determinations and airfoil thickness distribution, and then the scroll geometry of fan is designed by using logarithmic spiral. The aerodynamic performance of designed fan is predicted by the meanline analysis with flow blockage, slip and pressure loss correlations. Based on the predicted performance data, fan noise is predicted by two models for cutoff frequency and broadband noise sources. The present predictions for the performance and the noise level of actual fans are well agreed with measurement results.

Measurement of aerodynamic noise of maglev vehicle models using sound camera (음향카메라를 이용한 자기부상열차 모형의 공력소음 측정)

  • Kim, Sang-Ryul;Kim, Hyun-Sil;Kim, Jae-Seung;Kang, Hyun-Ju;Kim, Bong-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.637-640
    • /
    • 2008
  • Noise generated from maglev vehicles mainly consists of two components, one is due to mechanical noise and the other due to aerodynamic noise. The former is due to the vehicle-guideway interactions and the latter results from the unsteady air flow around the vehicle. Aerodynamic noise could become more predominant around 225 km/h for maglev vehicles. In this paper, the aerodynamic noise of maglev vehicles is investigated experimentally. The results of the wind tunnel experiments of maglev vehicle models are introduced and compared. The comparison shows that the position of the main noise is between the bottom of the vehicle model and the rail. It is also found that the emitted sound pressure level is related to the gap size between the vehicle bottom and the rail.

  • PDF

Aeroacoustic Tonal Noise Prediction of Cross-Flow Fan by a Hydrodynamic-Acoustic Splitting Method (유동-음향 분리 기법에 의한 횡류홴의 공력 소음 예측)

  • Cho, Yong;Moom, Young-J.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1869-1874
    • /
    • 2004
  • Acoustic pressure field around the cross-flow fan is predicted by a hydrodynamic-acoustic splitting method. Unsteady flow field is obtained by solving the incompressible Navier-Stokes equations using an unstructured finite-volume method on the triangular meshes, while the acoustic waves generated inside the cross-flow fan are predicted by solving the perturbed compressible equations(PCE) with a 6th-order compact finite difference method. Computational results show that the acoustic waves of BPF tone are generated by interactions of the blades wakes with the stabilizer, which then are reflected from the rear-guider and mainly propagate towards the fan inlet. Also, a directivity of BPF noise predicted by the PCE is noticeably different from that of the FW-H equations, in which a fan casing effect cannot be included.

  • PDF

Development of aerodynamic noise measurement method for high-speed trains (고속철도차량의 공력소음 측정 시험법 개발)

  • Minseung Jung;Jaehwan Kim;Hyung-Suk Jang;Jonghwan Kim;Cheolung Cheong;Kwongi Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.131-137
    • /
    • 2024
  • Aerodynamic noise generated by the surrounding flow of a train traveling at high speed affects both outdoor and indoor noise. This study's goal is to develop a test method to measure and quantitatively evaluate aerodynamic noise through pressure perturbation data on the train surface. To accurately evaluate aerodynamic noise, it is important to separate and evaluate the compressive and incompressible pressure fluctuations mixed in the acquired surface pressure fluctuation data. This is because the noise transmission characteristics of the two pressure fluctuations are different. First, the installation length and interval of the microphone were determined to acquire surface pressure fluctuation data, and wavenumber-frequency analysis was performed to separate incompressible pressure fluctuation and compressible pressure fluctuation to obtain a sound pressure level spectrum. Finally, as a result of comparing the test results measured in the train head and trail, It was confirmed that the pressure fluctuation on the train head surface was greater than that on the tail.

A Study on Aerodynamic and Noise Characteristics of a Sirocco Fan for Residential Ventilation (주거환기용 시로코홴의 공력 및 소음 특성 연구)

  • Kim, Jin-Hyuk;Song, Woo-Seog;Lee, Seung-Bae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.18-23
    • /
    • 2010
  • This paper presents a procedure for the aerodynamic and aeroacoustic characteristics of a sirocco fan. For the aerodynamic and aeroacoustic analyses of the sirocco fan, three-dimensional steady and unsteady Reynolds-averaged Navier-Stokes equations are solved with a shear stress transport turbulence model for turbulence closure. The flow analyses were performed on a hexahedral grid using a finite-volume solver. The validation of the numerical results is performed by comparing with experimental data for the pressure, efficiency and power. The internal flow analyses of the sirocco fan are performed to understand the unstable flow phenomenon on the casing for the wall pressure and internal flow characteristics at each position. It was found that fluctuation of pressure and locally concentrated noise source are observed near the cut-off and expansion regions of the casing.

Visualization of Aerodynamic Noise using Computational Aeroacoustics (전산 공력음향학을 이용한 공력 소음의 가시화)

  • Lee Duck Joo;Kim Jae Wook;Lee In Cheol
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.3-7
    • /
    • 2004
  • In this paper, computational aeroacoustics (CAA) method is used for flow-noise analysis and flow-noise visualization. High order high resolution scheme of optimized high order compact is used to resolve the small acoustic quantities and large flow quantities at the same time. An adaptive nonlinear artificial dissipation model and generalized characteristic boundary condition are also used. Aeolion tone noise, cavity noise, and jet noise are investigated. The visualizations of flow-noise are successful and characteristics of noise are studied. It is observed that the propagation directivity of noise is different with that of flow. With the help of CAA method, the visualization of noise is possible.

  • PDF

Study for Aerodynamic and Aeroacoustic Characteristics of Multirotor Configurations Considering the Wake Interaction Effect (멀티로터형 비행체의 후류 상호작용을 고려한 공력 및 공력소음 해석 연구)

  • Ko, Jeongwoo;Kim, Dong Wook;Lee, Soogab
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.469-478
    • /
    • 2019
  • Multirotor configurations such as VTOL and urban air mobility have been focused on today due to the high maneuverability. Aerodynamic and aeroacoustic characteristics of multirotor have much difference to those of a single rotor. In this study, a numerical analysis based on the free wake vortex lattice method is used for identifying the wake interaction effect. In order to compare the various configurations and operating conditions, the effects of the spacing between the rotors in hovering flight and the effects of the advancing ratio and the formation in forward flight are discussed. In the hovering flight, the unsteady loading of multirotor changes periodically and loading fluctuation increases as decreasing the spacing. It causes the variation in unsteady loading noise and the noise directivity pattern. In the forward flight, the difference in loading fluctuation and noise characteristics are observed according to the diamond and square formation of rotors. By comparing with results of single rotor analysis, multirotor configurations have different directivity pattern and amplitude of loading noise according to the location of each rotor. As a result, wake interaction effect becomes a highly important factor for aerodynamic and aeroacoustic analysis according to multirotor configurations and operating conditions.