• Title/Summary/Keyword: 공대지 유도폭탄

Search Result 8, Processing Time 0.021 seconds

Computation of Launch Acceptability Region of Air-to-Surface Guided Bomb for Moving Target (이동표적에 적용 가능한 공대지 유도폭탄의 투하 가능 영역)

  • Kang, Yejun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.601-608
    • /
    • 2021
  • Launch Acceptability Region of Air-to-Surface Guided Bomb is defined as the set of release points in order to reach a target successfully. LAR is consisted of fixed target area and moving target area whether the target maneuvers or not. In this paper, the computational algorithm of LAR is studied for fixed and moving target. First, multi-simulations are performed varying platform, target, and atmospheric environment to attain Min/Max DB. Second, the LAR functions are obtained using regression and classification algorithm. For operational suitability, the algorithm for display of LAR is studied to obtain appropriate LAR. In this progress, the results of LAR are suitable to apply air-to-ground guided bomb for moving target.

Developing an Algorithm to Calculate Launch Acceptability Region of Air-to-Ground Guided Bomb (공대지 유도폭탄 투하 가능 영역 계산 알고리즘 개발)

  • Seo, Jeong Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.517-522
    • /
    • 2017
  • Launch Acceptability Region(LAR) is a region for an aircraft which carries air-to-ground guided bombs to enter such that it can successfully hit the target. LAR should consider the release condition of an aircraft, impact condition for targets, and environmental condition of atmosphere. In this paper, LAR algorithm was developed using the database of many simulations which were varied by inputs, such as the release, impact, and environmental conditions. The algorithm was tested through the direct simulation results, and found that it was suitable to apply as LAR for air-to-ground guided bomb.

Tests of a Guidance Kit for Air-to-Surface Bomb (공대지 폭탄용 유도키트 시험)

  • Lee, Inwon;Lee, Kidu;Park, Youngkuen;Lim, Sangsoo;Baek, Seungwoock;Lee, Daeyearl
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.314-318
    • /
    • 2013
  • Tests and evaluations following the U.S. MIL-HDBK/STANDARD were successfully conducted to assure the performance of the air-to-surface guidance kit which was developed first in Korea. Various ground tests confirmed the operation capability and reliability of the guidance kit, and flight tests proved very good mid-range gliding performance and accuracy of the gliding bomb which was a general purpose bomb with the guidance kit.

Computation for Launch Acceptability Region of Air-to-Surface Guided Bomb Using Artificial Neural Network (인공신경망을 이용한 공대지 유도폭탄의 투하가능영역 산출)

  • Kim, Seonggyun;Park, Jeongho;Park, Sanghyuk;Lee, Seoungpil;Kim, Kilhun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.283-289
    • /
    • 2018
  • Launch Acceptability Region(LAR) means an area for successfully hitting the target. And LAR should be calculated in real time on aircraft so that LAR can be seen by pilot. LAR can be changed by the launch condition of the bomb, the impact condition of the target, and the atmospheric condition at the time of flight of the bomb. In this paper, we propose the calculation method of LAR using Artificial Neural Network(ANN). The learning data was generated by changing each condition from existing LAR model, and LAR model was derived through ANN learning. We confirmed the accuracy of the new LAR model by comparing the difference between the result data of existing LAR model and the new LAR model. And we confirmed the possibility of real time calculation of the LAR model on the aircraft by comparing the calculation time.

Design of a Guidance Kit for Air-to-Surface Bomb (공대지 폭탄용 유도키트 설계)

  • Lee, Dae-Yeol;Lee, In-Won;Joe, Jae-Ho;Kim, Yong-Bin;Ju, Hyun-Jun;Jung, Na-Hyeon;Park, Jun-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.733-738
    • /
    • 2013
  • A guidance kit transforming a general purpose bomb into an air-to-surface gliding bomb was developed. This guidance kit consists of a flight kit and a tail kit. Flight kit contains deployable wing, GPS/INS integrated navigation system, guidance and control system. Also this guidance kit was designed to use neither electrical nor mechanical interface with aircraft, and to increase dramatically the survivabilities of pilot and aircraft with the high accuracy and the mid-range non-powered gliding capability.