• Title/Summary/Keyword: 공내재하시험

Search Result 45, Processing Time 0.026 seconds

Static and Dynamic Stability Evaluation of Model Guardrail Posts Based on Geotechnical Properties (지반특성에 기초한 모형 연성방호책 지주의 정적 및 동적안정성 평가)

  • Lim, Yu-Jin
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.233-245
    • /
    • 2009
  • Availability of pressuremeter test for evaluation of geotechnical properties of foundation soil into which guardrail post is to be installed is investigated in this study. First, an analysis method of the post based on the pressuremeter test is proposed that can obtain bending moment and load-deformation profiles of the post. Then static horizontal load test onto a small scale guardrail post is performed in order to get bearing capacity and load-deformation pattern of the model post. The obtained results are compared with the load-deformation curves and bearing capacity of the post obtained from the pressuremeter method. In addition horizontal impact test to the post is performed using a model bogie car in order to check failure pattern around the model foundation and to investigate dynamic bearing capacity due to deceleration and inertia force of the soil. It is verified that the pressuremeter test is so useful and reasonal technique to analyze road foundation-post interaction.

  • PDF

Evaluation of Subgrade Stiffness using Pressuremeter Test (공내재하시험에 의한 포장하부기초 강성도 평가)

  • Lim, Yu-Jin;Hai, Nguyen Tien;Jang, Duk-Sun
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.25-36
    • /
    • 2004
  • The pressuremeter test can be used as an effective tool for evaluating stiffness of lower pavement layers including subgrade and subbase. At present, the most practical and applicable methods for evaluation of the stiffness of the subgrade and subbase are PBT and CBR in Korea. However, these methods have inherent drawbacks and large variabilities of test results themselves. In this study, an evaluation method and a test procedure that can be used for decision of pavement stiffness using pressuremeter were developed. The obtained results representing stiffness of the subgrade and subbase can replace PBT's soil reaction value k and CBR in design methods. It is found that the developed procedure based on the pressuremeter can provide an effective correaltion between the PBT's soil reaction value k and PMT's reloading modulus ($E_R$).

  • PDF

Pressuremeter Test in YULCHON Combined Cycle Power Plant (율촌 복합화력발전소 공내 재하 시험)

  • Lee, Yong-Gil;Park, Kyung-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.5-13
    • /
    • 2001
  • The purpose of this paper is to present the pressuremeter test result and analysis for Yulchon Combined Cycle Power Plant(CCPP) site. The CCPP site is old backfill area with the hillcut materials obtained from the borrow sources near the mountains. The geology of this area consists of 6-layers from the ground level such as hillcut material, dredged clay fill, silty sand, original marine clay, weathered rock, soft rock, etc.. The pressuremeter test has been carried out with three different probe, in size and membrane type for all layers except the clay layers. The cone penetration test has been also carried out to collaborate with the pressuremeter test in the hillcut material layer.

  • PDF

A Study on the Shear Modulus of Weathered Granite Soil by Pressuremeter Tests (공내재하시험을 이용한 화강풍화토의 전단계수 산정)

  • Kim, Jong-Soo;Lee, Kyu-Hwan;Lee, Chang-Tok;Lee, Song
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.95-106
    • /
    • 1997
  • A pressuremeter is an expandable tube which is placed in the soil, and then expanded under controlled condition against the soil. From this test a pressure expansion curve of the soil can be obtained. However soil disturbance during the test has significant influence on the results of tests. A general governing equation for pressuremeter test can be theoretically derived on the basis of the hyperbolic soil model and the cavity expansion theory. The curve fitting technique was used to establish the pressure-strain curve without disturbance of soil during testing. This interpretation makes use of both the loading and unloading portions of the test. An interpretation methodology is described and illustrated with pressuremeter test data carried out in the weathered granitic soil to estimate initial shear modulus. Standard penetration test is a very common site investigation technique in Korea. Therefore the blow counts of standard penetration test are discussed by comparing them with initial shear modulus.

  • PDF

Substructure Evaluation of Pavement due to Excavation and Recompaction Sequences for Pipe Installation (굴착, 관 매입 및 다짐 연속과정에 따른 포장하부구조 강성펑가)

  • Lim, Yu-Jin;Park, Jae-Beom
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.239-247
    • /
    • 2009
  • Pipe installation following excavation of pavement and underlying-soils induces settlements, cracks and bad roughness near utility cut. This study is to use PMT and LDWT in order to evaluate stiffness and/or degree of compaction of sublayers and backfill in utility cut section because no specially designed efforts for evaluating stiffness condition of the substructures below new pavement after pipe installation are offered at this time. From test results of PMT, comparable stiffness and/or degree of compaction in recompaction process is not obtained comparing to that of the existing sublayers before excavation. Thickness of the new surface layer after pipe installation must be designed thicker than that of the existing surface layer. It is verified that LDWT comparing to PMT is effective only to get stiffness and/or degree of compaction within limited depth from surface of materials, but it is not useful to evaluate stiffness of substructures in full depth in case of utility cut.

  • PDF

Bearing Capacity and Settlement Characteristics of Weathered Granite Masses in Gyeonggi Area (경기지역 화강 풍화암반의 지지력 및 침하특성에 관한 연구)

  • Kim, Dong-Eun;Huh, Kyung-Han
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.37-47
    • /
    • 2005
  • The purpose of this study is to estimate the bearing capacity and settlement characteristics of the weathered granite masses, and on the process to achieve the purpose, in the first place, the weathered degree according to the absorption index was examined and reviewed, then plate bearings test in in-situ depth were tested, and finally the result was compared and examined with the result of the existing, estimate method and pressuremeter test. In order to achieve the purpose of this study, a typical area distributed with weathered granite masses, gyeonggi area, was chosen as a sample site for testing, and in the result, it appeared and found out that the more the weathered degree increases when the plate bearing test are tested, the more the bearing capacity decreases a numerical indexes and the more greatly the width of the decrease of bearing capacity increases around the boundary of specific, weathered degrees. Also, In the result from estimating the bearing capacity of weathered granite masses by the existing, suggested formula, it appeared that there is a tendency that the more the weathered degree increases, the more similar the bearing capacity becomes with the result of plate bearing tests.

Evaluation of Weathering Intensity and Strength Parameter for Weathered Granite Masses (I) (화강 풍화암의 풍화도 및 강도정수의 평가 (I))

  • 이종규;장서만
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.227-236
    • /
    • 2003
  • The evaluation of the reliable strength and deformation characteristics of weathered granite masses is very important for the design of geotechnical structure under working stress conditions. Various types of laboratory test such as triaxial compression test can be performed to determine the strength parameters. However, it is very difficult to obtain the representative undisturbed samples on the site and also the rock specimen cannot represent rock mass including discontinuities, fracture zone, etc. This study aims to investigate the strength and deformation characteristics of granite masses corresponding to its weathering and develop a practical strength parameter evaluation method using the results of PMT. To predict weathering intensity and strength parameters of the weathered granite masess in the field, various laboratory tests and in-situ tests including field triaxial test and PMT are carried out. Based on the results of weathering index tests, the classification method is proposed to identify the weathering degree in three groups for the weathered granite masses. Using the analytical method based on the Mohr-Coulomb failure criteria and the cavity expansion theory, the strength parameters of rock masses were evaluated from the results of PMT. It shows that weathering intensity increases with decreasing the strength parameters exponentially. The strength parameters evaluated with the results of PM almost coincide with the results of field triaxial test.

The Correlation Between RMR and Deformation Modulus by Rock masses using Pressuremeter (공내재하시험을 이용한 암종별 변형계수와 RMR의 상관성)

  • Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.5-12
    • /
    • 2011
  • In this study, correlation between measured deformation modulus using pressuremeter and RMR value conducted in 10 sites is analyzed, and applicability of the conventional empirical formulas to the rock masses in Korea are analyzed, It is found that if RMR is below 40, the correlation between deformation modulus and RMR accords Kim Gyo-won's formula and Aydan, Serafim and Pereira's one well, but if the RMR exceeds 40, the correlation was lower than those from the formula. Such results may be attribute to the fact that during classification of RMR, scores are weighed relatively more in joint conditions and apertures than such highly correlational items as uniaxial compression strength or RQD, and RMR would not be evaluated qualitatively due to different weathering degrees and rock mass types as well as engineers' personal errors. Sandstone among sedimentary rocks are quite well accord with suggested equation, but correlation of other rocks are due to large variance. In this study, correlation expressions of various rocks are proposed as the function of exponential based on the field test data.

Evaluation of Engineering Properties of CLSM using Weathered Granite Soils (화강풍화토를 이용한 CLSM의 공학적 특성평가)

  • Lim, Yu-Jin;Seo, Chang-Beom
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.19-26
    • /
    • 2009
  • In this study, flowable backfill made with weathered granite soil is tested to provide basic engineering properties that can be used as design input to overcome settlement problems in road pavement due to low stiffness of backfill which is generated by porosity of the soil. For design purpose, a proper mixing ratio is developed first. Then several test methods including FF/RC, PMT and LDWT including axial compression test are adapted for checking stiffness and measuring axial strength of the material separately that can be used for design values.