• Title/Summary/Keyword: 공기 극

Search Result 205, Processing Time 0.031 seconds

Eelectrochemical Performance of Perovskite Materials coated Cathode for MCFC (perovskite 물질이 코팅된 MCFC용 공기극의 전기화학적 성능 고찰)

  • Song, Shin Ae;Kang, Min Gu;Yoon, Sung Pil;Han, Jong Hee;Oh, In Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.133.2-133.2
    • /
    • 2010
  • 현재 융융탄산염 연료전지의 공기극으로 다공성의 lithiated NiO를 사용하고 있는데 이 재료의 경우 크게 두 가지의 문제점을 안고 있다. 첫 번째는 Ni이 전해질 내로 용해하는 것이고, 두 번째는 낮은 활성으로 인한 높은 공기극의 분극이다. Ni이 전해질로 용해되는 문제는 Co나 Fe를 코팅하여 공기극 표면에 $Li_x(Ni_yCo_{1-y})1-xO_2$$Li_x(Ni_yFe_{1-y})_{1-x}O_2$를 형성시켜 NiO의 전해질 내로 용해되는 것을 억제하는 방법이나 ZnO, MgO, $La_2O_3$ 등의 산화물을 NiO 표면에 코팅하여 전해질과 접촉을 막는 방식으로 해결하는 등 많은 연구가 이루어져 왔다. 하지만 연료극의 비해 상당히 높은 공기극의 분극으로 인해 큰 전압손실이 일어나 용융탄산염 연료전지 성능이 낮아지는 문제의 경우 이를 해결하고자 하는 연구는 상대적으로 많이 진행되지 못한 상태이다. 특히 현재 용융탄산염 연료전지의 장기수명화를 위해 기존의 작동온도인 $650^{\circ}C$ 보다 다소 낮은 온도인 $600{\sim}620^{\circ}C$에서 작동하려는 움직임이 있다. 작동 온도가 내려가면 전해질이 휘발되는 속도가 낮아져 전해질 부족에 따른 운전시간이 줄어드는 문제를 해결할 수 있어 장기 수명화를 위해서는 작동온도를 낮추는 것이 매우 유리하다. 하지만 작동 온도가 내려가면서 양 전극에서 일어나는 전기화학 반응 속도가 느려지기 때문에 각 전극에서의 활성화 분극으로 인한 전압손실은 더욱 커질 수밖에 없다. 특히 연료극의 수소산화반응 속도는 공기극의 산소환원반응에 비해 매우 빠르기 때문에 작동 온도가 내려감에 따라 연료극의 분극이 커지는 것에 비해 공기극의 분극이 급격히 커지게 된다. 따라서 운전온도가 낮아지는 상황에서는 낮은 작동온도에서도 성능감소가 적게 일어나 0.8V 이상 운전(150mA/$cm^2$, 단위전지 기준)이 가능한 공기극의 개발이 매우 필요한 실정이다. 이를 해결하고자 본 연구에서는 고체 산화물 연료전지의 공기극의 재료로 많이 연구되고 있는 혼합전도성 물질의 페로브스카이트 구조의 물질을 기존 NiO 전극에 코팅하여 새로운 공기극을 개발하였다. 페로브스카이트 구조의 물질로 대표적인 LSCF 물질을 사용하였으며 LSCF를 코팅한 공기극을 이용한 단위전지에서 150mA/$cm^2$의 전류를 흘려주었을 때 0.84V의 성능을 1000hr 유지하였다. 이는 기존의 NiO 전극을 사용했을 때보다 15~20mV 높은 값이다. 낮은 작동온도에서도 좋은 성능을 보였는데, 기존의 NiO 전극의 경우 $630^{\circ}C$에서 0.79V의 성능을 보인 반면 LSCF가 코팅된 공기극의 경우 $620^{\circ}C$에서 0.811V의 매우 좋은 성능을 보였다. 이는 LSCF의 산소이온전도성 및 전기전도성이 공기극에서의 분극을 낮추어 성능을 증가시키는 것으로 보인다.

  • PDF

Effects of Storage Condition on Degradation of Automotive Polymer Electrolyte Membrane Fuel Cells (보관상태가 자동차용 고분자전해질 연료전지의 성능 감소에 미치는 영향)

  • Cho, Eun-Ae
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.277-282
    • /
    • 2010
  • Durability of automotive polymer electrolyte membrane fuel cell (PEMFC) strongly depends the startup/shutdown procedure. Formation of hydrogen/air boundary in the anode gas channel, so-called reverse current condition, particularly induces fast degradation of the cathode. Under the reverse current condition, high voltage is present at the cathode facing air in the anode gas channel and is a function of residual oxygen concentration in the gas channels, that increases with storage time and reaches 21% (air) eventually. In this study, effects of residual oxygen concentration in a PEMFC on degradation of the PEMFC.

Numerical Analysis of the electrochemical performance of a zinc-air fuel cell (수치해석을 이용한 아연공기전지의 전기화학적 성능 연구)

  • Kim, Jungyun;Park, Sangmin;Oh, Taeyoung;Lee, Hoil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.74.1-74.1
    • /
    • 2010
  • 수치해석을 이용하여 형상 및 운전 조건에 따른 금속공기전지의 전기화학적 성능 변화를 조사하였다. 저전류밀도 영역에서의 전지 성능은 농도손실에 의한 영향이 미미하므로 활성화 손실과 저항손실만을 고려한 수치해서 모델을 적용하였다. 지배방정식은 전기전도식을 이용하였으며 전극 표면의 활성화손실을 모사하기위해 아연극(음극)에는 butler-volmer식을, 공기극(양극)에는 tafel식을 적용하였다. 실험결과와의 비교/분석을 통하여 수치해석 모델의 타당성을 검증하였다. 또한, 아연극과 공기극 사이의 간격과 전해질 농도 변화에 따른 아연공기전지 내부에서의 전류밀도분포를 조사하였으며, 분극곡선을 통해 전기화학적 성능을 평가하였다.

  • PDF

Analysis of Electrode Polarization in MCFC by a Reference Electrode (기준 전극을 이용한 용융탄산염 연료전지의 분극 특성 해석)

  • Han Jonghee;Lee Kab Soo;Chung Chang-Yeol;Yoon Sung-Pil;Nam Suk-Woo;Lim Tae-Hoon;Hong Seong-Ahn
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.125-131
    • /
    • 2001
  • A long-term variation of electrode polarization in the MCFC has been analyzed successfully using a single cell with a Au, $CO_2/O_2$ reference electrode Four different cells with different components were operated and their electrode polarizations were analyzed. As published in the literatures, the cathode polarization was larger than that of the anode. The more stable operation of a single cell with the Al-coated cell frame up to 6,000hrs indicates that the corrosion at the cell frame, particularly wet seal area, plays an important role to determine the lifetime of a MCFC. At the initial stage of the cell operation, the voltage of the cell using a cathode stabilized by the $LiCoO_2$ coating was relatively low due to the high cathode polarization. As the cell was operated and the stabilized cathode was lithiated sufficiently, the cathode polarization decreased and the cell voltage was recovered. It was observed that the voltage of the cell using the $Li_2CO_3/Na_2CO_3$ electrolyte fluctuated with operation time and the cathode polarization fluctuated along with the cell voltage quite similarly. Although the mechanisms of the voltage fluctuation were not clear yet, the results imply that the voltage fluctuation was related with a reaction in the cathode side. After testing every single cell, the cathode polarization increased with the steep decrease in the cell voltage. Thus, the cathode should be improved in order to develop more durable MCFC.

Preparation and Characteristics of High Performance Cathode for Anode-Supported Solid Oxide Fuel Cell (연료극 지지체식 고체산화물 연료전지용 고성능 공기극 제조 및 특성 연구)

  • Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.88-93
    • /
    • 2005
  • Anode-supported solid oxide fuel cell (SOFC) was investigated to increase the cell power density at intermediate temperature through control of the cathode structure. The anode-supported SOFC cell were fabricated by wet process, in which the electrolyte of $8mol\%\;Y_2O_3-stabilized\;ZrO_2 (YSZ)$ was coated on the surface of anode support of Ni/YSA and then the cathode was coated. The cathode has two- or three- layered structure composed of $(La_{0.85}Sr_{0.15})_{0.9}MnO_{3-x}(LSM),\;LSM/YS$ composite (LY), and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3{LSCF)$ with different thickness. Their single cells with different cathode structures were characterized by measuring the cell performance and ac impedance in the temperature range of 600 to $800^{\circ}C$ in humidified hydrogen with $3\%$ water and air. The cell with $LY\;9{\mu}m/LSM\;9{\mu}m/LSCF\;17{\mu}m$ showed best performance of $590mW/cm^2$, which was attributed to low polarization resistance due to LY and to low interfacial resistance due to LSCF.

Study on Flooding Phenomena at Various Stoichiometries in Transparent PEM Unit Fuel Cell (PEM 단위 연료전지 가시화 셀을 이용한 당량비 변화에 따른 플러딩 현상에 관한 연구)

  • Nam, Ki-Hoon;Byun, Jae-Ki;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.625-632
    • /
    • 2012
  • The objective of this paper is to demonstrate the cathode channel flooding effects at different stoichiometries in proton exchange membrane (PEM) fuel cells by using visualization techniques. The phenomena of liquid water formation and removal caused by current variations were also examined experimentally. Tests were conducted at cathode stoichiometries of 1.5 and 2.0, and the anode stoichiometry was fixed at 1.5. It is found that at an air-side stoichiometry of 2.0, liquid water begins to form and the flooding occurs faster than at an air-side stoichiometry of 1.5. Also, when the air-side stoichiometry of 1.5 is maintained, the dry-out phenomena is observed in the dry-out area 7.8 A following the field of flooding. Thus, a stoichiometry of 1.5 produced better performance in terms of membrane electrode assembly (MEA) durability and hydrogen ion conductivity than did a stoichiometry of 2.0, in which dry-out occurs beyond 8A.

The Study of Fuel Supply Characteristics of 2W DMFC Module (상온 작동 2W급 직접 메탄올 연료전지 모듈의 연료공급 특성 연구)

  • Yun, Hyo-Jin;Hong, Chul-Ho;Kim, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1158-1159
    • /
    • 2008
  • 본 논문에서는 상온상태에서 2W급 직접 메탄올 연료전지 모듈을 구동하여 연료전지 모듈의 성능 특성을 분석하고자 한다. 상온상태에서 연료극으로 공급하는 메탄올의 농도와 유량을 변화를 시켜 상온에서 최적의 메탄올 농도와 유량을 찾고 공기극에 공기를 공급 하였을 때 와 공기를 공급하지 않았을 때 의 연료전지의 출력을 전자 부하기를 이용하여 부하를 주고 메탄올의 유량을 변화 시켜가면서 비교해보았다.

  • PDF

The performance of PEMFC during exposure to simultaneous sulfur impurity poisoning on cathode and anode (공기극과 연료극의 복합 황불순물에 의한 고분자 전해질막 연료전지의 성능에 미치는 영향)

  • Lee, Soo;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.594-598
    • /
    • 2012
  • Polymer electrolyte membrane fuel cell(PEMFC) performance degrades seriously when sulfur dioxide and hydrogen sulfide are contaminated in the fuel gas at anode and air source at cathode, respectively. This paper reveals the effect of the combined sulfur impurity poisoning on both PEMFC cathode and anode parts through measuring electrical performance on single FC operated under 1 ppm to 10 ppm impurity gases. The severity of $SO_2$ and $H_2S$ poisoning depended on concentrations of impurity gases under optimum operating conditions($65^{\circ}C$ of cell temperature and 100 % relative humidity). Sulfur adsorption occured on the surface of Pt catalyst layer on MEA. In addition, MEA poisoning by impurity gases were cumulative. After four consecutive poisonings with 1, 3, 5 to 10 ppm, the fuel cell performance of PEMFC was decrease upto 0.54 V(76 %) from 0.71 V.

Performance of Air Electrodes with a Surface-Polished Yttria-Stabilized Zircona Electrolyte for Thin-Film Solid Oxide Fuel Cells (박막 고체산화물 연료전지용 이트리아 안정화 지르코니아 전해질 연마표면상의 공기극 성능)

  • Lee, Yu-Gi
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.283-289
    • /
    • 2001
  • Composite cathodes of 50/50 vol% LSM- YSZ (La$_{1-x}$Sr$_{x}$MnO$_3$-yttria stabilized zirconia) were deposited onto surface- Polished YSZ electrolytes by colloidal deposition technique. The cathode characteristics were then examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD) and studied by ac impedance spectroscopy (IS). The typical impedance spectra measured for an air/LSM- YSZ/YSZ/Pt/air cell at $700^{\circ}C$ were composed of two depressed arcs. Addition of YSZ to the LSM electrode significantly enlarged the triple-phase boundaries (TPB) length inside the electrode, which led to a pronounced decrease in cathodic resistivity of LSM-YSZ composite electrodes. Polishing the electrolyte surface to eliminate the influences of surface impurities and to enlarge the TPB length can further reduce cathode resistivity. The cathodic resistivity of the LSM- YSZ electrodes was a strong function of operation temperature, composition and particle size of cathode materials, applied current, and electrolyte surface roughness.

  • PDF

Electrochemical Characteristics of Anode-supported Solid Oxide Fuel Cells (연료극 지지형 고체산화물 연료전지의 전기화학적 특성)

  • Yoon Sung Pil;Han Jonghee;Nam Suk Woo;Lim Tae-Hoon;Hong Seong-Ahn;Hyun Sang-Hoon;Yoo Young-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.58-64
    • /
    • 2001
  • YSZ ($8mol\%$ yttria-stabilized zirconia)-modified LSM $(La_{0.85}Sr_{0.15}MnO_3)$ composite cathodes were fabricated by formation of YSZ film on triple phase boundary (TPB) of LSM/YSZ/gas. The YSZ coating film greatly enlarged electrochemical reaction sites from the increase of additional TPB. The composite cathode was formed on thin YSZ electrolyte (about 30 Um thickness) supported on an anode and then I-V characterization and AC impedance analyses were performed at temperature between $700^{\circ}C\;and\;800^{\circ}C$. As results of the impedance analysis on the cell at $800^{\circ}C$ with humidified hydrogen as the fuel and air as the oxidant, R1 around the frequency of 1000 Hz represents the anode Polarization. R2 around the frequency of 100Hz indicates the cathode polarization, and R3 below the frequency of 10 Hz is the resistance of gas phase diffusion through the anode. The cell with the composite cathode produced power density of $0.55\;W/cm^2\;and\;1W/cm^2$ at air and oxygen atmosphere, respectively. The I-V curve could be divided into two parts showing distinctive behavior. At low current density region (part I) the performance decreased steeply and at high current density region (part II) the performance decreased gradually. At the part I the performance decrease was especially resulted from the large cathode polarization, while at the part H the performance decrease related to the electrolyte polarization.