• Title/Summary/Keyword: 공기화학반응

Search Result 307, Processing Time 0.024 seconds

Fuel Cell Modeling and Load Controlling by the Variable Utilization of Airflow (연료전지 모델링 및 공기이용률 제어에 관한 연구)

  • Song, S.H.;Lee, W.Y.;Kim, C.H.;Park, Y.P.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.48-52
    • /
    • 2003
  • A mathematical dynamic model of fuel cell was formulated in order to design the control system which will meet the control object. The control objective is set to regulate the airflow in the load change by utilization of airflow and the pressure difference between anode and cathode is maintained below a limit range. Simulation result of 10kW polymer electrolyte membrane fuel cell (PEMFC) clearly demonstrates that response time need to be less. than 1 seconds for the control requirements. Besides, pressure difference was allowed in pressure range less than 0.01 atm.

Rechargeable Zn-air Energy Storage Cells Providing High Power Density (고출력.고에너지 밀도의 아연금속-공기전지)

  • Park, Dong-Won;Kim, Jin Won;Lee, Jae Kwang;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.359-366
    • /
    • 2012
  • Zn-Air energy storage cell is an attractive type of batteries due to its theoretical gravimetric energy density, cost-effective structure and environmental-friendly characteristics. The chargeability is the most critical in various industrial applications such as smart portable device, electric vehicle, and power storage system. Thus, it is necessary to reduce large overpotential of oxygen reduction/evolution reaction, the irreversibility of Zn anode, and carbonation in alkaline electrolyte. In this review, we try to introduce recent studies and developments of bi-functional air cathode, enhanced charge efficiency via modification of Zn anode structure, and blocking side reactions applying hybrid organic-aqueous electrolyte for high power density rechargeable Zn-Air energy storage cells.

Effect of Air Flow Rate on the Performance of Planar Solid Oxide Fuel Cell using CFD (평판형 고체산화물 연료전지의 CFD 성능해석에서 공기유량변화의 영향)

  • Kim, Danbi;Han, Kyoungho;Yoon, Do-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.4
    • /
    • pp.172-181
    • /
    • 2015
  • Solid Oxide Fuel Cells (SOFC) continue to be among the most promising alternative energy devices. This paper addresses i-V characteristics of SOFC with a focus on air flow rate along the planar anode electrodes. To address this, detailed Butler-Volmer kinetics are implemented in a general-purpose CFD code FLUENT. The numerical results were validated against experimental data from the literature showing excellent match with i-V polarization data ranging 1V-0.4V. Numerical calculations of fuel cell operation under different flow rare conditions were performed in three-dimensional geometries. Results are presented in terms of concentration distribution of hydrogen, oxygen, and water. The simulations and results indicate that advanced CFD with UDF(User-Defined Function) of Butler-Volmer kinetics can be used to identify the conditions leading to air flow rate and specific surface area and guide development of operating conditions and improve the fuel cell system performance.

Study on the Effect of Iron-based Metal Catalysts on the Thermal Decomposition Behavior of ABS (Iron계 금속 촉매가 ABS의 열분해 거동에 미치는 영향에 관한 연구)

  • Jang, Junwon;Kim, Jin-Hwan;Bae, Jin-Young
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.496-501
    • /
    • 2005
  • The thermal degradation of ABS in the presence of iron-based metal catalysts has been studied by thermogravimetric analysis (TGA). The reaction of iron-based metal catalysts (ferric nitrate nonahydrate, ammonium ferric sulfate dodecahydrate, iron sulfate hydrate, ammonium ferric oxalate, iron(II) acetate, iron(II) acetylacetonate and ferric chloride) with ABS has been found to occur during the thermal degradation of ABS. In a nitrogen atmosphere, char formation was observed, and at $600^{\circ}C$ approximately 3~23 wt% of the reaction product was non-volatile char. The resulting enhancement of char formation in a nitrogen atmosphere has been primarily due to the catalytic crosslinking effect of iron-based metal catalysts. On the other hand, char formation of ABS in air at high temperature by iron-based metal catalyst was unsuccessful due to the oxidative degradation of the char.

Iodine Deposition onto the Chinese Cabbage (요오드의 배추에 대한 침적)

  • Lee, Han-Soo;Choi, Heui-Joo;Kang, Hee-Suk;Yu, Dong-Han;Keum, Dong-Kwon;Lim, Kwang-Mook;Park, Hyo-Kook;Choi, Yong-Ho;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.3
    • /
    • pp.173-177
    • /
    • 2004
  • The Chinese cabbage, being one of the principal foodstuffs in Asian countries, is tested for iodine exposure. As a radioactive source, iodine-125 of which the radiological half life is 60 days was used to measure the concentration change. Experiments were carried out four times with different times of exposure. The iodine source was prepared by the chemical reaction of NaI in order to avoid producing relatively large iodine which might be generated In the case of crystal evaporation. The deposition velocity was obtained from the integrated air concentration and surface concentration of the Chinese cabbage. The environmental half life was also calculated.

A Study on the Formation of Hydrous Ferric Oxide from Ferrous Sulfate (黃酸第一鐵로부터 含水酸化鐵生成에 關한 硏究)

  • Sung Joo Kyung;Suhl Soo Duk;Whang Yong Kil
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.142-146
    • /
    • 1975
  • The formation of iron oxide hydroxide in a ferrous sulfate was studied in different contents of iron in the solution at a temperature range of 90 to $100^{\circ}C$ under 1${\sim}$3 atmospheres. The Mohr's salt thus formed was hydrolyzed under 1 to 3 atmospheres, in 14 to 72 g/l of iron content in the solution pH 3 or 6 for two hours at 90 to $100^{\circ}C$. The results obtained was as follows; 1) In Mohr's salt solution, as the iron content was increased, with decreasing the concentration of hydrogen ion, the yield of iron oxide hydroxide was gradually increased. 2) When iron content in Mohr's salt solution was 42.81 g/l, 91.5% of iron was recovered in the form of $\alpha$-goethite similar to yellow grade of natural goethite. 3) When $\alpha$-goethite obtained was calcined of $500^{\circ}C$, it was turned into ${\alpha}$-ferric oxide with a redish brown colour.

  • PDF

Difluoromethane Synthesis over Fluorinated Metal Oxide (불화된 금속산화물 촉매상에서 이불화메탄의 합성)

  • Lee, Youn-Woo;Lee, Kyong-Hwan;Lim, Jong Sung;Kim, Jae-Duck;Lee, Youn Yong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.619-623
    • /
    • 1998
  • The influences of reaction temperature, HF/DCM mole ratio, contact time and catalyst type on activity and selectivity of difluoromethane synthesis via hydrofluoriation of dichloromethane over fluorinated catalyst have been studied. It has been found that fluorinated $Cr/Al_2O_3$ catalysts, show better performance compared to pure fluorinated $Al_2O_3$ catalyst and then, non-treated catalysts demonstrate better than catalysts pretreated with hydrogen and air. The results show that the optimum reaction conditions are found as follows : reaction temperature at $340^{\circ}C$, mole ratio of HF/DCM 5 or above and contact time 20 sec. or above. With these conditions the maximum attainable yield of difluoromethane has been found to be greater than 80%. In particular, the activity and the selectivity of difluoromethane do not change with the reaction time on stream up to 8 hours.

  • PDF

Electrochemical characteristics of Ni alloy arc thermal spray coated SS400 steel to improve corrosion resistance in marine environment (해양환경 하에서 SS400강의 내식성 향상을 위한 니켈합금 아크 열용사 코팅 층의 전기화학적 특성)

  • Park, Il-Cho;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.141-141
    • /
    • 2016
  • 방식 코팅 기술은 조선해양산업은 물론 에너지, 철강 및 비철 소재, 건설 산업 등 산업 전반에서 폭넓게 적용되고 있다. 또한 산업 고도화에 따라 점차 가혹해지는 소재의 적용 환경을 고려해보면 향후 지속적으로 산업 수요가 증대될 것으로 예상할 수 있는 기술이다. 특히 아크 열용사법을 이용한 방식 코팅 기술은 미국이나 일본과 같은 선진국에서는 해양플랜트, 석유 시추시설 등 대형 해양 구조물은 물론 다리, 항만시설과 같은 철재 또는 시멘트 구조물의 방식 기술로 널리 적용되어 일반화된 기술이다. 그러나 국내에서는 아직까지도 초기 비용 상승 및 미약한 관련 기술 등의 이유로 대부분 방식도료를 사용하고 있는 실정이다. 그리하여 단기 수명에 따른 재시공 시 많은 환경오염을 유발하는 방식도료를 대체할 수 있는 아크 열용사법을 이용한 방식코팅 기술에 대한 관심과 수요가 점차 증가되고 있다. 그 일환으로 본 연구에서는 해양 구조물 강재의 방식을 위해 니켈계 용사재료를 이용하여 아크 열용사 코팅을 실시한 후 다양한 전기화학적 실험을 통해 내식성을 평가하고자 하였다. 아크 열용사 코팅은 구조용 강재 SS400강에 대하여 니켈합금 선재(1.6 Ø)를 사용하여 실시하였다. 용사 시 용사거리는 200 mm, 공기압력은 약 $7kg/cm^2$ 정도로 유지하면서 용사코팅을 실시하여 약 $200-250{\mu}m$ 두께로 코팅 층을 형성시켰다. 그리고 전기화학적 실험은 천연해수 속에서 자체 제작한 홀더(holder)를 이용하여 $3.14cm^2$의 용사코팅 층만을 노출시켜 실시하였다. 그리고 기준전극은 은/염화은 전극을, 대극은 백금전극을 사용하였다. 전기화학적 실험을 통해 부동태 특성 및 용사코팅 층 표면의 양극 용해반응 특성을 분석하기 위한 양극분극 실험은 OCP로부터 +3.0 V까지 실시하였다. 또한 부식전위 및 부식전류밀도 분석을 위한 타펠분석은 OCP를 기준으로 -0.25에서 +0.25 V까지 분극시켜 실시하였다. 그리고 주사전자현미경과 3D 분석을 통해 부식손상 표면을 관찰하였다. 그 결과 니켈합금으로 용사코팅된 강재의 내식성이 상당히 향상되었다.

  • PDF

Effect of Gas Diffusion Layer Compression and Inlet Relative Humidity on PEMFC Performance (기체확산층 압축률과 상대습도가 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.68-74
    • /
    • 2021
  • Gas diffusion layer (GDL) compression is important parameter of polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on contact resistance, reactants transfer to electrode, water content in membrane and electrode assembly (MEA). In this study, the effect of GDL compression on fuel cell performance was investigated for commercial products, JNT20-A3. Polarization curve and electrochemical impedance spectroscopy was performed at different relative humidity and compression ratio using electrode area of 25 ㎠ unit cell. The contact resistance was reduced to 8, 30 mΩ·㎠ and membrane hydration was increased as GDL compression increase from 18.6% to 38.1% at relative humidity of 100 and 25%, respectively. It was identified through ohmic resistance change at relative humidity conditions that as GDL compression increased, water back-diffusion from cathode and electrolyte membrane hydration was increased because GDL porosity was decreased.

Electrochemical Characteristics of Anode-supported Solid Oxide Fuel Cells (연료극 지지형 고체산화물 연료전지의 전기화학적 특성)

  • Yoon Sung Pil;Han Jonghee;Nam Suk Woo;Lim Tae-Hoon;Hong Seong-Ahn;Hyun Sang-Hoon;Yoo Young-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.58-64
    • /
    • 2001
  • YSZ ($8mol\%$ yttria-stabilized zirconia)-modified LSM $(La_{0.85}Sr_{0.15}MnO_3)$ composite cathodes were fabricated by formation of YSZ film on triple phase boundary (TPB) of LSM/YSZ/gas. The YSZ coating film greatly enlarged electrochemical reaction sites from the increase of additional TPB. The composite cathode was formed on thin YSZ electrolyte (about 30 Um thickness) supported on an anode and then I-V characterization and AC impedance analyses were performed at temperature between $700^{\circ}C\;and\;800^{\circ}C$. As results of the impedance analysis on the cell at $800^{\circ}C$ with humidified hydrogen as the fuel and air as the oxidant, R1 around the frequency of 1000 Hz represents the anode Polarization. R2 around the frequency of 100Hz indicates the cathode polarization, and R3 below the frequency of 10 Hz is the resistance of gas phase diffusion through the anode. The cell with the composite cathode produced power density of $0.55\;W/cm^2\;and\;1W/cm^2$ at air and oxygen atmosphere, respectively. The I-V curve could be divided into two parts showing distinctive behavior. At low current density region (part I) the performance decreased steeply and at high current density region (part II) the performance decreased gradually. At the part I the performance decrease was especially resulted from the large cathode polarization, while at the part H the performance decrease related to the electrolyte polarization.