• Title/Summary/Keyword: 공기측 입구온도

Search Result 12, Processing Time 0.03 seconds

Comparison of Heat Transfer Performance and Pressure Drop of Fin-Tube and Aluminum Heat Exchangers (핀-튜브 열교환기와 알루미늄 열교환기의 전열성능과 압력강하 특성비교)

  • Chang, Keun-Sun;Lee, Hyun-Su;Kim, Jae-Duck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.222-229
    • /
    • 2009
  • This study presents comparison of heat transfer and air side friction characteristics in a condenser condition of air conditioner between Louver fin-tube heat exchangers and aluminum parallel heat exchangers. All experiments are performed using an air-enthalpy type calorimeter, which is designed based on the method described in ASHRAE standards. The air velocities crossing the heat exchanger tubes are varied from 0.7 to 1.6 m/s with 0.3 m/s interval, maintaining air dry temperature and relative humidity at $20^{\circ}C$ and 60% respectively. Water temperature and flow rate inside the tube are $70^{\circ}C$ and 10 LPM, respectively. Experimental results show that the heat transfer performances of aluminum heat exchangers are 17-163% higher than those of Louver fin-tube heat exchangers based on the data per unit volume, mass, and heat transfer area, whereas air side pressure drops of aluminum heat exchangers are 19-81% lower.

A study on the performance of the finned tube heat exchanger affected by the frosting using CFD tool (전산해석을 이용한 착상이 핀튜브 열교환기 성능에 미치는 영향에 관한 연구)

  • Kim, Sung-Jool;Choi, Ho-Jin;Ha, Man-Yeong;Bang, Seon-Wook
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2738-2743
    • /
    • 2008
  • We conducted a study by computational simulation about the effects of frost thickness on the pressure drop and heat transfer characteristics as whole heat exchanger configuration changes. In order to perform the analysis for validation, we assumed that frost properties have constant values and the frost layers that are formed on the fin and tube surfaces are uniform. In order to find the constant thermal conductivity of frost layer, a variety of frost thermal conductivities are performed in our work and compared with the results by Lee et al. [4] and Yang et al. [5] proposed many experimental data about the 2-rows and 2-columns finned tube heat exchanger. The numerical results agreed well with the experimental data when frost conductivity is 0.07W/mK. After the validation had performed, we applied this procedure to the finned tube heat exchanger of domestic refrigeration and investigated the thermo-hydraulic characteristic of the heat exchanger affected by frost thickness according to the inlet velocities and temperatures of air considering the configuration change such as fin pitch.

  • PDF

Experimental Study on the Dependence of Variation in Performance of a High-Temperature Generator on Its Operating Conditions (운전조건 변화가 고온재생기의 성능에 미치는 영향에 관한 실험적 연구)

  • Bae, Kyungjin;Kwak, Myoungseok;Cho, Honghyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.389-397
    • /
    • 2014
  • An absorption chiller-heater using only a natural refrigerant hardly causes any environmental pollution. In an absorption chiller-heater, the performance of its high-temperature generator, which uses exhaust gases, is essential to achieving superior system performance. To investigate the performance of such a high-temperature generator, a laboratory-scale high-temperature generator working with exhaust gases was designed and tested. Changes in the performance of the high-temperature generator as a function of inlet conditions of the absorbing solution, such as air inlet temperature and mass flow, were investigated. It was observed that when the air mass flow rate ratio was increased from 80% to 120%, the heat capacity was increased by 30%, 33%, 34%, and 37%, respectively. Additionally, when the air inlet temperature was elevated from $170^{\circ}C$ to $210^{\circ}C$ for absorption solution concentrations of 56%, 55%, 545, and 53%, the heat capacity increased by 140%, 160%, 220%, and 224%, respectively.

Experimental Study on the Characteristics of Air Heating Vaporizer at Different Season (계절 변화에 대한 공기 가열식 기화기의 특성에 관한 실험적 연구)

  • Eldwin, D.;Lee, Y.H.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.12-19
    • /
    • 2007
  • 현재, 육지에서 필요한 천연 가스 (NG)의 얻기 위한 방법으로 공기 가열식 기화기의 사용이 증가하고 있다. 특히, 파이프라인에 의해 도달될 수 없는 거리가 멀리 떨어진 소외된 지역까지 보낼 수 있기 때문에 소형 위성기지의 역할은 대단히 중요하다고 할 수 있다. 소형 위성기지의 LNG는 인수기지에서 탱크로리를 이용하여 배달되고 그 후에 위성기지에서 기화과정을 통하여 각 수요처로 보내어진다. 공기 가열식 기화기는 LNG 인수기지 외의 소형 위성기지 단위에서 최근 많이 개발되고 사용되고 있는 기화기의 종류 중 하나라고 할 수 있다1). 효율적인 공기 가열식 기화기를 개발하기 위하여, 핀이 없는 경우와 핀이 8개이고 핀의 길이가 55 mm인 공기 가열식 기화기를 사용하여 실험을 진행하였고 그리고 나서 두 가지 유형의 기화기를 비교하였다. 실험조건은 기화기의 길이 변화와 여러 가지 주위 조건(온도, 습도, 풍속)을 변화하였다. 실험에 적용된 주위 온도는 각 계절별 온도와 동일한 온도를 적용하였다. 본 실험에서 나타내고자 한 공기가열식 기화기의 주요 특성은 각 계절별 조건에 따른 입구 측과 출구 측의 온도차를 비교하는 것이다. 액화천연가스(LNG)를 가지고 실험을 하는 것은 위험성이 있어 특성이 비슷하면서 안전한 $LN_2$를 사용하여 실험을 진행하여 핀을 가지는 기화기가 핀이 없는 기화기보다는 좋다는 결과를 확인할 수 있었다.

  • PDF

Analysis of Characteristics on Small Air Conditioning Type Condenser (소형 공조용 응축기의 특성 해석)

  • 김재돌;장재은;윤정인
    • Journal of Energy Engineering
    • /
    • v.8 no.1
    • /
    • pp.14-22
    • /
    • 1999
  • 본 연구는 일반적으로 소·중용량의 냉동·공조기에 많이 사용되고 있는 플레이트 핀 코일형 공냉응축기를 대상으로 수치해석에 의해 응축기의 특성을 파악하였다. 해석에서는 응축기를 과열증기영역, 2상영역 및 과냉각액영역으로 구분하여 공냉 응축기의 성능에 큰 영향을 미치고 있는 공기온도, 공기측열전달률, 입구 냉매온도, 응축온도 및 질량유량 등을 파라메터로하여 이들의 상호관계와 이들이 응축완료점까지의 거리 및 방열량 등에 미치는 영향을 파악하였다. 해석결과로는 해석모델로부터 각 영역의 냉매 상태량, 온도분포 및 열전달률을 구할 수 있었고, 일반적으로 응축기의 성능에 많은 영향을 미치는 각종 파라메터들을 중심으로 광범위한 동작조건에서 이들의 상관관계 및 특성을 파악하므로서 응축기 설계를 위한 기초 자료 및 설치장소나 주위환경 등에 따라 서로간에 다양한 영향을 미치는 실제장치의 동적특성 해석을 위한 자료를 얻을 수 있었다.

  • PDF

Experimental study on heating performance characteristics of electric heat pump system using stack coolant in a fuel cell electric vehicle (연료전지 스택 폐열 활용 전동식 히트펌프 시스템 난방 성능 특성 연구)

  • Lee, Ho-Seong;Kim, Jung-Il;Won, Hun-Joo;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.924-930
    • /
    • 2018
  • The objective of this study was to investigate heating performance characteristics of electric heat pump system in a fuel cell electric vehicle (FCEV). In order to analyze heating performance characteristics of electric heat pump system with plate-type heat exchanger using stack coolant to evaporate the refrigerant, R-134a, each component was installed and tested under various operating conditions, such as air inlet temperature of inner condenser and compressor speed. When the air inlet temperature of inner condenser was varied from $0.0^{\circ}C$ to $-20.0^{\circ}C$, heating capacity was not quite different due to similar temperature gap between inlet and outlet of inner condenser with electric-driven expansion valve (EEV). However, COP increased until certain EEV opening, especially under 45.0%, because of decreasing power consumption. According to the compressor speed variation from 2,000 to 4,000 RPM, heating capacity and COP were found to have opposite trend. In the future works, stack coolant conditions as the heat source for tested heat pump system were analyzed with respect to heating performance, such as heating capacity and COP.

A Study on Heat Transfer and Pressure Drop Characteristics of Staggered Tube Banks using CFD Analysis (CFD해석을 통한 엇갈린형 관군의 열전달 및 압력강하 특성에 관한 연구)

  • Zhao, Liu;Yoon, Jun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.2985-2992
    • /
    • 2015
  • In this study, the characteristics of heat transfer and pressure drop was theoretically analyzed by changing longitudinal pitch, bump phase, location of vortex generator about the staggered tube banks by applying SST (Shear Stress Transport) turbulence model of ANSYS FLUENT v.14. Before carrying out CFD (Computational Fluid Dynamics) analysis, It is presumed that the boundary condition is the tube surface temperature of 363 K, the inlet air temperature of 313 K and the inlet air velocity of 5-10 m/s. The results indicated that the heat transfer coefficient is not affected by the longitudinal pitch and the bump phase of circle type was more appropriate than serrated type in the characteristics of heat transfer and pressure drop. Additionally, in case of vortex generator location, the heat transfer characteristics showed that forward location of tube was more favorable 4.6% than backward location.

Numerical Modeling of Current Density and Water Behavior at a Designated Cross Section of the Gas Diffusion Layer in a Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지의 동작압력에 대한 가스 확산층의 위치 별 전류밀도 및 수분거동에 대한 수치해석)

  • Kang, Sin-Jo;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.161-170
    • /
    • 2012
  • There are many factors to consider when attempting to improve the efficiency of fuel cell operation, such as the operation temperature, humidity, stoichiometry, operation pressure, geometric features, etc. In this paper, the effects of the operation pressure were investigated to find the current density and water saturation behavior on a cross section designated by the design geometry. A two-dimensional geometric model was established with a gas channel that can provide $H_2$ to the anode and $O_2$ and water vapor to the cathode gas diffusion layer (GDL). The results from this numerical modeling revealed that higher operation pressures would produce a higher current density than lower ones, and the water saturation behavior was different at operation pressures of 2 atm and 3 atm in the cathode GDL. In particular, the water saturation ratios are higher directly below the collector than in other areas. In addition, this paper presents the dependence of the velocity behavior in the cathode on pressure changes, and the velocity fluctuations through the GDL are higher in the output area than in inlet area. This conclusion will be utilized to design more efficient fuel cell modeling of real fuel cell operation.

Performance Comparison of Fin-Tube Type Evaporator using R134a and R1234yf under the Frost Condition (착상조건에서 R134a와 R1234yf를 적용한 핀-관 형태의 증발기 성능 비교)

  • Shin, Yunchan;Kim, Jinhyun;Cho, Honghuyn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5795-5801
    • /
    • 2015
  • The low temperature distribution of the refrigerated and frozen food has been increased gradually. Refrigeration industry is using R134a refrigerant, which GWP is 1300. R1234yf is an alternative refrigerant of R134a because GWP of R1234yf refrigerant is just 4. Evaporator used in refrigeration truck refrigeration system is operated on low temperature condition. Accordingly, evaporator is formed frost and the formation of frost is rapidly decreased performance of evaporator. In this study, the performance of evaporator using R134a and R1234yf refrigerant was analyzed with operating conditions under frost condition. As a result, the performance of R134a evaporator according to air inlet temperature, relative humidity and evaporating temperature was more sensitive than R1234yf evaporator. Besides, the frost growth of R134a evaporator is steeper than that of R1234yf one.

A Study on the Heat Exchanger Fouling Characteristics of Sludge Incinerator at the IronWorks (제철슬러지 소각로 열교환기에서의 파울링특성 연구)

  • 박상일;김정근;김기홍;박용준;조성문
    • Journal of Energy Engineering
    • /
    • v.12 no.3
    • /
    • pp.223-230
    • /
    • 2003
  • A study was performed to measure and analyze the gas-side fouling of heat exchanger to cool the exhaust gas from sludge incinerator at ironworks. The incinerator gas passes through inside of the vertical tubes of heat exchanger to preheat the combustion air. This kind of fouling occurs at the entrance region of the heat exchanger and thus the perforated fouling plate was designed to measure the gas-side fouling and to analyze the particulate deposit. As a result of analysis, the particulate deposition rate was influenced by temperature, particulate composition and size and also the deposition patterns were different according to the location of perforated fouling plate. The computational analysis was performed to obtain the deposition rates at the perforated fouling plate and the calculation showed that the deposition rate was varied with the hole size and particulate size. It was proved that the fouling at the entrance region of heat exchanger could be measured by the perforated fouling plate designed in this study.