• Title/Summary/Keyword: 공기의 저항

Search Result 497, Processing Time 0.027 seconds

A Study on the Korea Industrial Standardization of ISO 9053 (공기흐름저항(ISO 9053)의 KS 규격 제정에 관한 연구)

  • Jung, Sung-Soo;Kook, Chan;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.984-985
    • /
    • 2004
  • The ISO 9053, acoustics - materials for acoustical applications - determination of airflow resistance was reviewed in order to make it as a KS and the basic contents were introduced. The measurement apparatus according to ISO 9053 were made and tested.

  • PDF

A Study on the Contribution of Exterior Devices to Running Resistance in High-Speed Trains (고속열차 외부장치에 의한 주행저항 기여도 연구)

  • Oh, Hyuck Keun;Kwak, Minho;Kwon, Hyeok-bin;Kim, Sang-soo;Kim, Seogwon
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.309-316
    • /
    • 2015
  • The contribution of exterior devices such as bogie fairings and pantographs to running resistance was estimated on the basis of coasting tests at up to 350 km/h with the help of the Korean Next Generation High speed train (HEMU-430X). In order to assess the reduction of air resistance by nose car's bogie fairing, coasting tests were conducted with a removable bogie fairing at various speed ranges. And, the contribution of the pantograph to air resistance was also estimated with coasting tests that include the pantograph's rising and descent modes. The linear regression method was used to examine decelerations from time-velocity data and the equation of resistance to motion is proposed from the deceleration data. From the aerodynamic term of the equation of resistance to motion, the contribution to air resistance by nose car's bogie fairing and pantograph was estimated. The results show that the air resistance was reduced by about 3.8% by the nose car's bogie fairing. And, the 3.9% increase of air resistance by the pantograph (open knee mode) has been found.

화제의 현장 - 올림픽과 첨단과학기술, 공기저항 줄이는 보디슈트 세라믹스 스파이크도 개발

  • Korean Federation of Science and Technology Societies
    • The Science & Technology
    • /
    • v.33 no.10 s.377
    • /
    • pp.10-12
    • /
    • 2000
  • 더 빠르게... 더 높게... 이번 시드니올림픽에서 새로운 기록을 세우기 위해 선진국들은 스포츠 과학화에 많은 투자를 했다. 피로를 줄이는 수영복, 레이저 달린 소총, 공기저항 줄이는 보디슈트, 사이클의 실크타이어 등 미국이 동원한 첨단 스포츠과학기술을 소개한다.

  • PDF

지하공동 모델의 전기비저항 특성에 관한 실험적 연구

  • Park, Gap-Jin;Kim, Hyeon-Su;Kim, Hyeon-Seung;Song, Yeong-Su
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.93-98
    • /
    • 2009
  • Comprehension of physical properties distribution of underground cavity must be made primarily to show the clear image of the state of the cavity. A physical scale model experiment is executed assuming that underground cavity in filled with air or water of different ratio. The state of cavity wall is considered wet. Cavity model is made of agar. As a experimental result, even if the cavity wall is wet, high air and water ratio cavity shows high anomaly.

  • PDF

Epidural Space Identification Device Using Air-filled Catheter (공기도관을 사용하는 경막외강 자동탐지기구)

  • 강재환;김현식;김경아;김상태;배진호;임승운;차은종
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.9-13
    • /
    • 2003
  • An assist device was developed to identify the epidural space by continously monitoring the air-filled catheter pressure. The pressure signal appropriately amplified and filtered enabled to alarm the needle introduction into the epidural space by thresholding detection. Ten LEDs provided a visual change of catheter pressure before alarming for user convenience. Clinical trials were performed in 30 patients with 83% success rate at the first trial. When failed, the second trial was enough for successful anesthesia. The air volume introduced during each anesthesia was less than 1ml, causing side effects. Air filling of the catheter could also minimize infection possibility. Therefore, the present device guarantees safe anesthesia with user convenience.

A Numerical Study on the Effect of Pressure Relief Ducts on the Normal Pressure in a Preliminary Design of Honam-Jeju Subsea Tunnel (호남-제주 해저터널 가상설계의 공기압력 제어 덕트가 열차 주행에 미치는 영향에 대한 수치해석 연구)

  • Seo, Sangyeon;Ha, Heesang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.8
    • /
    • pp.17-27
    • /
    • 2016
  • High-speed trains have been developed widely in European countries and Japan in order to transport large quantity of people and commodities in short time. Additionally, a high speed train is one of the most desirable and environmentally friendly transportation methods. When a high speed train enters a tunnel, aerodynamic resistance is generated suddenly. This resistance causes micro pressure wave and discomfort to passengers. Due to this aerodynamic pressure against the train, a large amount of traction is required for the operation of a train in a tunnel. Therefore, it is essential to incorporate a pressure relief system in a tunnel in order to reduce aerodynamic resistance caused by a high-speed train. A pressure relief duct and a vertical shaft are representative measures in a tunnel. This study represents the effect of pressure relief ducts in order to alleviate positive and negative normal pressures acting on a train. One-dimensional numerical simulations were carried out in order to estimate the effect of pressure relief systems.

Parametric Study on the Aerodynamic Drag of Ultra High-speed Train in Evacuated Tube - Part 1 (진공튜브 내 초고속열차의 공기저항 파라메타 연구 - 1)

  • Kwon, Hyeok-Bin;Kang, Bu-Byoung;Kim, Byeong-Yun;Lee, Du-Hwan;Jung, Hyun-Ju
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.44-50
    • /
    • 2010
  • This study is devoted to understand the basic characteristics of the flowfield around a train in evacuated tube and to suggest an efficient numerical method to calculate the flowfield. To get steady-state solution in minimum calculation domain, various boundary condition have been tried for steady calculation and have been compared to the solution of unsteady calculation. At the train velocity of 300km/h, the aerodynamic drag results of both calculation method agreed very well. The drag ratio between on the open filed and in the tube from the calculation result by the suggested numerical method lied in the same fitting curve with that from the filed test of high-speed trains running in the line.

Investigation of Drop Test Method for Simulation of Low Gravity Environment (저중력 환경 모사를 위한 낙하 시험 방법 연구)

  • Baek, Seungwhan;Yu, Isang;Shin, Jaehyun;Park, Kwangkun;Jung, Youngsuk;Cho, Kiejoo;Oh, Seunghyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.78-87
    • /
    • 2021
  • Understanding the liquid propellant transport phenomena in low gravity is essential for developing Korea Space Launch Vehicle (KSLV) upper-stage for the diversity of space missions. A low-gravity environment can be simulated via the free-fall method on the ground; however, the air drag is inevitable. To reduce air resistance during free fall, air-drag shield is usually adopted. In this study, the free-fall method was performed with an air-drag shield from a 7-m height tower. The acceleration of a falling object was measured and analyzed. Low gravity below 0.01 g was achieved during 1.2-s free fall with the air-drag shield. The minimum gravitational acceleration value at 1.2-s after free fall was ±0.005 g, which is comparable to the value obtained from Bremen drop tower experiments, ±0.002 g. A prolonged free-fall duration may enhance the low-gravity quality during the drop tower experiments.

A Study on Air Flow Analysis due to the Shape of Automotive Body (자동차 차체의 형상에 따른 공기 유동해석에 관한 연구)

  • Lee, Hyun-Chang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.2
    • /
    • pp.19-23
    • /
    • 2014
  • In this study, the air resistance is studied by using flow analysis near automotive body due to the its shape. Flow velocities of airs entering into inlet plane are two kinds of 70 km/h and 100 km/h. Air resistance in case of high speed driving(100 km/h) becomes higher than regular speed driving(70 km/h) and the resistance in case of the car with wider cross section at front side becomes higher than narrower cross section. By using this analysis result, the shape of automotive body can be effectively designed in order to reduce the air resistance.

Development of an Aerodynamic Simulation for Studying Microclimate of Plant Canopy in Greenhouse - (1) Study on Aerodynamic Resistance of Tomato Canopy through Wind Tunnel Experiment - (공기유동해석을 통한 온실내 식물군 미기상 분석기술 개발 - (1) 풍동실험을 통한 토마토 식물군의 공기저항 연구 -)

  • Lee In-Bok;Yun Nam-Kyu;Boulard Thierry;Roy Jean Claude;Lee Sung-Hyoun;Kim Gyoeng-Won;Lee Seung-Kee;Kwon Soon-Hong
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.289-295
    • /
    • 2006
  • A computational fluid dynamics (CFD) numerical model has been developed to effectively study the ventilation efficiency of multi-span greenhouses with internal crops. As the first step of the study, the internal plants of the CFD model had to be designed as a porous media because of the complexity of its physical shapes. In this paper, the results of the wind tunnel tests were introduced to find the aerodynamic resistance of the plant canopy. The Seogun tomato was used for this study which made significant effects on thermal and mass exchanges with the adjacent air as well as internal airflow resistance. With the main factors of wind speed, static pressure, and density of plant canopy, the aerodynamic resistance factor was statically found. It was finally found to be 0.26 which will be used later as an input data of the CFD model. Moreover, the experimental procedure of how to find the aerodynamic resistance of various plants using, wind tunnel was established through this study.