• Title/Summary/Keyword: 공기유로 형상

Search Result 25, Processing Time 0.033 seconds

Numerical Study on Performance of PEMFC with Block and Sub-channel of Cathode Flow Field (캐소드 유로에서 블록과 서브 채널의 고분자전해질 연료전지의 성능에 관한 전산해석 연구)

  • Jo, Seonghun;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.613-620
    • /
    • 2021
  • A flow channel shape of PEMFC has an influence on the internal flow uniformity. If the reactant distribution in a flow path is not uniform during operation, both catalyst deactivation and mechanical damage of membrane could occur resulting in decreasing the membrane electrode assembly (MEA) durability. Numerous studies concerning flow design have been conducted to make smooth supply and uniform distribution of reactants in fuel cells. The baffle of flow path could improve fuel cell performance through the forced convection effect. A sub-channel, as an additional air flow path, could increase the reactant concentration and reduce the mass transfer loss via a smooth water discharge. In this study, computational fluid dynamics (CFD) was used to analyze the effect of blocks and sub-channels on the current density and oxygen concentration of the fuel cell. As a result, the limit current density and oxygen concentration at a rear block increased when using blocks and sub-channels in a flow channel. In particular, the current density increased significantly when the sub-channel was placed between two blocks. Also, the sub-channel position was optimized by analyzing the oxygen concentration, and the oxygen concentration was recovered at a rear block in the fuel cell.

An Optimum design study of nozzle for tenter machine (텐터기 노즐의 최적설계를 위한 수치해석적 연구)

  • ;Kim, Yong-Dae;Park, Si-U;Lee, Gi-Pung;Jeon, Du-Hwan
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.10a
    • /
    • pp.129-130
    • /
    • 2008
  • 텐터의 성능을 결정하는 요인은 여러 가지가 있으나, 섬유의 종류 또는 가공 공정의 목적에 따라 적절한 건조속도 및 효율성, 원단의 전 폭에 걸친 건조 균일도, 습윤 공기의 자동 배출, 원단의 장력 및 오버피드, 그리고 각종 자동화 제어 장치의 활용 등으로 구분되어 질 수 있으며, 그러므로 텐터기 챔버 내부의 공간구조에 따른 비효율적 유로형상과 공기 분사노즐 정확한 압력 및 온도분포에 대한 현장 기초자료를 확보하여 텐터의 에너지 절약 및 건조 원단의 품질을 향상시킬 수 있는 구조의 설계가 요구된다.

  • PDF

Numerical Study of the Rib Arrangements for Enhancing Heat Transfer in a Two-pass Channel of Large Aspect Ratio (종횡비가 큰 이차유로에서 냉각성능 향상을 위한 요철배열 연구)

  • Han, Sol;Choi, Seok Min;Sohn, Ho-Seong;Cho, Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.161-169
    • /
    • 2017
  • The present study investigated the effect of the rib arrangement and a guide vane for enhancing internal cooling of the blade. Two types of rib arrangements were used in the first and second passage in parallel. Aspect ratio of the channel was 5 and a fixed Reynolds number based on hydraulic diameter was 10,000. The attack angle of rib was $60^{\circ}$, rib pitch-to-height ratio (p/e) was 10, and the rib height-to-hydraulic-diameter ratio ($e/D_h$) was 0.075. The effect of an interaction between Dean vortices and the secondary vortices from the first passage was observed. Overall, the attack angle of rib in the first passage was dominant factor to heat transfer and flow patterns in turning region. Also, the channel with a guide vane showed enhanced heat transfer at the tip surface with reducing flow separation and recirculation.

Design Optimization and Analysis of a RBCC Engine Flowpath Using a Kriging Model Based Genetic Algorithm (Kriging 모델기반 유전자 알고리즘을 이용한 RBCC 엔진 유로 최적설계 및 분석)

  • Chae, Sang-Hyun;Kim, Hye-Sung;Yee, Kwan-Jung;Oh, Se-Jong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.51-62
    • /
    • 2017
  • A design optimization method is applied for the flow path design of RBCC engine, an important factor for the determining the propulsion performance operating at air-breathing mode. A design optimization was carried out to maximize the specific impulse of the RBCC engine by using a genetic algorithm based on the Kriging model. Results are analyzed using ANOVA and SOM. Design conditions of ramjet and scramjet mode are selected as Mach number 4 at 20 km altitude and Mach number 7 at 30 km, respectively. The optimized design presents that the specific impulse is increased by 7% and 10% on each condition than the baseline design.

An Experimental Study of Evaporative Heat Exchangers with Mini-channels (물의 증발잠열을 이용하는 미니채널 열교환기의 실험적 연구)

  • Lee, Hyung-Ju;Yoo, Young-June;Min, Seong-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.245-253
    • /
    • 2010
  • The present study shows some results of developing evaporative heat exchangers with mini-channels. Heat exchangers with three different water paths were manufactured and tested to compare performances of cooling and pressure drop. Among the three types of heat exchangers, Type 2 with full-etching was proved to be the best in the cooling performances for considered operating conditions, and thus it is recommended to adopt Type 2 for its simplicity of production and outstanding performance. However, Type 1 was shown to be better when it is operated at a high air inlet temperature condition. The developed evaporative heat exchanger will be installed in Environmental Control Systems(ECSs) for aerial vehicles, and it can be used effectively in case an ECS is not only limited in its weight and volume but also required to absorb heats without supplying water (or a coolant) for a certain period of time.

  • PDF

Effect of air flow channel configuration on performance of direct methanol fuel cells. (공기극 채널 형상이 직접 메탄올 연료전지의 성능에 미치는 영향)

  • Hwang, Yong-Sheen;Choi, Hoon;Cha, Suk-Won;Lee, Dae-Young;Kim, Seo-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.137-140
    • /
    • 2007
  • We consider the optimum air flow channel design for DMFC's in the present study. The effect of pressure drop across the inlet and outlet of a stack on the performance of a DMFC is the optimization of such geometric parameters is crucial to minimize the parasitic power usage by the auxiliary devices such as fuel pumps and blowers. In this paper, we present how the pressure drop control can optimize the driving point of a DMFC stack. Further, we show how the optimal fuel utilization ratio can be achieved, not degrading the performance of DMFC stacks. Overall, we discuss how the flow channel design affects the selection of balance of plant(BOP) components, the design of DMFC systems and the system efficiency.

  • PDF

Development of Heat Exchanger for Cooling Bleed Air (Bleed Air 냉각용 열교환기 개발)

  • Yu, Kyoung-Won;Baek, Nak-Gon;Park, Bong-Kyo;Kim, Joon-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.427-430
    • /
    • 2008
  • This study considered the heat exchanger of bleed air from engine. The computional fluid analysis was performed considering the external flow and internal flow on heat exchanger. Using the CFD results, the external configuration and internal flow path of heat exchanger were designed. And also the performance test is conducted and the results of tests were compared with the analysis resutls.

  • PDF

A numerical study on the aerodynamic characteristics of a variable geometry throttle valve(VGTV) system controlling air-flow rate (유량 제어장치인 가변스로틀밸브의 기하학적 형상변화에 따른 공기역학 특성분석 연구)

  • Cho, Hyun-Sung;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.378-383
    • /
    • 2013
  • A butterfly throttle valve has been used to control the brake power of an SI engine by controlling the mass flow-rate of intake air in the induction system. However, the valve has a serious effect on the volumetric efficiency of the engine due to the pressure resistance in the induction system. In this study, a new intake air controlling valve named "Variable Geometry Throttle Valve(VGTV)" is proposed to minimize the pressure resistance in the intake system of an SI engine. The design concept of VGTV is on the application of a venturi nozzle in the air flow path. Instead of change of the butterfly valve angle in the airflow field, the throat width of the VGTV valve is varied with the operating condition of an SI engine. In this numerical study, CFD(computational fluid dynamics) simulation technique was incorporated to have an aerodynamics performance analysis of the two air flow controlling systems; butterfly valve and VGTV and compared the results to know which system has lower pressure resistance in the air intake system. From the result, it was found that VGTV has lower pressure resistance than the butterfly valve. Especially VGTV is effective on the low and medium load operating condition of an SI engine. The averaged pressure resistance of VGTV is about 49.0% lower than the value of the conventional butterfly throttle valve.

Performance Analysis of PEMFC Using Computational Flow Dynamics (CFD) (전산유체역학 (CFD)을 이용한 PEMFC의 성능분석)

  • Kim, Sunhoe
    • Journal of Digital Convergence
    • /
    • v.11 no.8
    • /
    • pp.199-204
    • /
    • 2013
  • Computational fluid dynamics (CFD) is used to reduce number of experiments. The CFD tools are widely used for engine design and flow pattern analysis to reduce experiments. In this study the performance of a PEMFC single cell was analyzed by using STAR-CD, product of CD-ADAPCO. The effect of cell design and flow pattern on the performance of a PEMFC was analyzed with the 3-D simulation. As a result the performance of rectangular cell was the higher than that of square cell, while the flow direction scarcely affected on the performance of a PEMFC. Also the current density according to different excess ratio of air flow rate was compared and analyzed. The difference between maximum and minimum current density of flip-flow was lower than that of co-flow.

An Experimental Study on the Fluid Flow in Monolithic Catalyst Supports (모노리스 촉매담체내의 유체유동에 관한 실험적 연구)

  • 최희탁;목재균;이은호;유재석;이종화
    • Journal of Energy Engineering
    • /
    • v.4 no.2
    • /
    • pp.288-296
    • /
    • 1995
  • 촉매변환기용 모노리스에서의 속도변화에 따른 압력강하를 알아보기 위하여 풍동을 제작하여 실험하였다. 200 cpsi, 300 cpsi와 400 cpsi의 모노리스 담체에 대한 압력강하를 측정하였고, 듀얼베드 형태에서의 압력강하를 알아보기 위하여 200 cpsi, 300 cpsi와 400 cpsi들 중 두 개씩 조합하여 두 모노리스 담체의 사이 간격을 변화시켜가면서 압력강하를 측정하였다. 또한 많이 사용되고 있는 촉매가 담지된 400cpsi의 모노리스를 이용하여 촉매 담지에 대한 유동의 영향을 살표보았다. 모노리스 상·하류간의 압력강하는 공극율에 상관없이 공기와 유로벽과의 접촉면적에 따라 증가한다. 실험 결과로부터 제안된 상관관계를 상용하여 모노리스 형상에 따른 압력강하를 근사적으로 예측 할 수 있다. 듀얼베드 형태에서의 압력강하는 상류부와 하류부의 개별적인 모노리스의 압력강하와 두 모노리스 사이에서의 압력강하의 합으로 볼 수 있는데, 두 모노리스 사이에서의 압력강하는 무시할 만 하였다. 따라서 듀얼베드 형태의 전체적인 압력강하는 상류부와 하류부의 개별적인 모노리스에서 생기는 압력강하만의 합으로 구할 수 있다. 촉매가 담지되지 않은 모노리스의 측정결과로부터 제안된 상관관계를 촉매가 담지된 모노리스의 압력강하를 예측하는데 사용하기 위해서는 모노리스 길이를 원래길이의 1.25배로 수정하여 사용하여야 한다.

  • PDF