• Title/Summary/Keyword: 공기열히트펌프

Search Result 32, Processing Time 0.035 seconds

Experimental study on heating performance characteristics of electric heat pump system using stack coolant in a fuel cell electric vehicle (연료전지 스택 폐열 활용 전동식 히트펌프 시스템 난방 성능 특성 연구)

  • Lee, Ho-Seong;Kim, Jung-Il;Won, Hun-Joo;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.924-930
    • /
    • 2018
  • The objective of this study was to investigate heating performance characteristics of electric heat pump system in a fuel cell electric vehicle (FCEV). In order to analyze heating performance characteristics of electric heat pump system with plate-type heat exchanger using stack coolant to evaporate the refrigerant, R-134a, each component was installed and tested under various operating conditions, such as air inlet temperature of inner condenser and compressor speed. When the air inlet temperature of inner condenser was varied from $0.0^{\circ}C$ to $-20.0^{\circ}C$, heating capacity was not quite different due to similar temperature gap between inlet and outlet of inner condenser with electric-driven expansion valve (EEV). However, COP increased until certain EEV opening, especially under 45.0%, because of decreasing power consumption. According to the compressor speed variation from 2,000 to 4,000 RPM, heating capacity and COP were found to have opposite trend. In the future works, stack coolant conditions as the heat source for tested heat pump system were analyzed with respect to heating performance, such as heating capacity and COP.

Performance Evaluation of Air Source Multi Heat Pump Floor Heating System in Apartment (공동주택 공기열 멀티 히트펌프의 바닥난방 성능 평가)

  • LEE, C.H.;Nah, H.S.;JUNG, H.;Kim, K.S.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.93-98
    • /
    • 2011
  • To analyze and evaluate the performance of developing air to water multi heat pump, the heat pump was installed and tested at low energy house in Daejeon, korea. Heating capacity of heat pump is 16.5KW and cooling capacity is 14.0KW. Space heating/cooling, floor heating and hot water is available. The results performance evaluation of heat pump in lab test showed that the coefficient of performance (cop) was 3.75, and heating capacity was 16.0KW in ambient temperature $7^{\circ}C$. Also at ambient temperature $-15^{\circ}C$, the COP was 1.69. At a low energy house, floor heating is controled by a floor heating water temperature and a room temperature. The COP of heat pump is decreased with frequent on/off operation for controlling of floor heating water temperature.

Empirical evaluation of the heating performance by a heat pump system with surplus heat from a greenhouse (온실 태양잉여열을 이용한 히트펌프시스템의 난방 성능평가에 관한 실증 연구)

  • Jeon, Byung-Yong;Park, Youn-Cheol;Ko, Gwang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.99-104
    • /
    • 2017
  • This study evaluated the heating performance of a hybrid heat pump system. The system was installed in a $100-m^2$ greenhouse to utilize surplus solar energy. A hybrid heat pump system was installed at Jocheon-ri, Jeju Island, for an empirical evaluation of the performance. The system consists of a heat storage tank and plate heat exchangers for several heat exchanges between the greenhouse and heat pump or storage tank. The system uses R410a as the working fluid and is controlled automatically by a defined set temperature of the greenhouse. This system incorporates two kinds of heat sources: outdoor air and a storage tank that collects heat from the topside of the greenhouse. The results showed that the heating capacity was 19.9 kW in the outdoor air source mode and 21.4 kW with direct heating from hot water in the thermal storage tank. These results are very similar to those of a previous study.

Ground Air Heat Exchanger Design and Analysis for Air Source Heat Pump (공기열원 히트펌프를 위한 공기식 지중 열교환기(GAHX) 설계 및 분석 연구)

  • Lee, Kwang-Seob;Lyu, Nam-Jin;Kang, Eun-Chul;Lee, Euy-Joon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.2
    • /
    • pp.1-6
    • /
    • 2016
  • A ground air heat exchanger (GAHX), also called earth air heat exchanger is a useful technology to be integrated with other renewable energy technologies. In this study, ground-air heat exchanger system for the air source heat pump is introduced. The purpose of this study is to design the volumetric flow rate and the length of GAHX system. A GAHX length model equation has been developed and used for calculation. GAHX thermal efficiency are recommended as 75% and 85% in order to optimize pipe length. $2,750m^3/h$, $2,420m^3/h$ of volumetric flow rate on 88.3m, 111.7m length are suggested for providing 7.5kW thermal capacity. And the number of path is recommended more than two to minimize pressure drop. For future study, advanced model equation study with ground thermal behavior and a more efficient GAHX design will be considered.

Study on Design Technology of Heat Pump Cycle for High Temperature Performance (고온 생산용 열펌프 사이클 설계)

  • Kim, Jong-Ryul;Kim, Seok-Young;Kim, Yong-Min;Lee, Kong-Hoon;Kim, Ook-Joong;Yi, Sung-Chul;Jung, Chi-Young;Kim, Jong-Ryeol
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.228-233
    • /
    • 2010
  • About 55% of total energy is consumed in the industrial division. The industrial heat pump application will show magnificent energy saving effect as well as higher cost efficiency because of larger energy consuming volume of each facility and longer operation hour and higher stability against seasonal temperature change. Over 90% of dryer for industrial usage has hot wind heat source and hot wind dryer is the representative type covering 68.7% while its 30 ~ 50% lower heat efficiency causes lots of energy loss by exhaust air. Re-usage of exhaust air can improve energy efficiency of dryer because 68% heat energy or 78% of hot air lose in exhaust air. Therefore, high temperature heat pump dryer can be the best alternative. Comparing to the existing dryer with 30% ~ 50% energy efficiency, newly developing high temperature heat pump dryer will enhance energy efficiency up to 60% ~ 80% efficiency. In this paper, heat pump system for high temperature was designed, constructed and tested. The results have shown that system COPh is estimated as 3.3.

A Study on Cycle and Flow Analysis for Improvement of Energy Efficiency of a Heat Pump Dryer with Hot Bypass Gas and Air Dampers During Warm-up Stage (고온 우회가스 및 에어댐퍼 사용을 통한 히트펌프 건조기 승온단계 에너지 효율 향상을 위한 사이클 및 유동해석 연구)

  • Park, Sang-Jun;Hwang, Il-Sun;Lee, Young-Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3827-3834
    • /
    • 2012
  • Recently, instead of hot air type dryers that require a lot of heat, energy-efficient heat pump dryers have been used in various fields such as paper, textile, wood, food, etc. In this paper, the characteristics of heat pump cycle were theoretically evaluated with hot-gas bypass system to further improve the energy efficiency by minimizing the use of electric heaters in early warm-up stage of the dryers for frozen agricultural products. In addition, damper system that leads outside air to flow into the dryer were optimized to obtain extra heat for higher energy efficiency.

A Study of Air-source Heat Pump Performance Analysis for Replacing Night Time Electric Heating Boiler (심야전기보일러 대체용 공기열 히트펌프 성능평가)

  • Jo, J.Y.;Jung, H;Lee, C.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.81-85
    • /
    • 2011
  • The night time electric cost is cheaper due to electric supply and demand policy in Korea from 1985. Currently about 900,000 customers are using night time electric heating boilers and this causes shift of peak demand time to night in winter and increase of deficit spending. To solve this problem, replacing night time electric heating boiler by air-source heat pump using night time electricity has been proposed. An air-source heat pump can provide efficient heating equipment especially in a warm climate. For estimating the night time electric heat pump COP(Coefficient of Performance), Korean Standard KS C 9306:2010 and European Standard EN-14511:2004 is available. SCOP(Seasonal COP) using European weather bin data is also calculated. SCOP is not available yet but European Committee for Standardization will establish a standard in the near future. The evaluation result show that the replacing night time electric heating boiler by heat pump can be possible.

Improvement of Heat Pump Heating Performance by Selective Heat Storage Using Air Heat of Inside and Outside Greenhouse (온실 내외부 공기열의 선택적 축열에 의한 히트펌프 난방성능 개선)

  • Kwon, Jin Kyung;Kim, Seung Hee;Jeon, Jong Gil;Kang, Youn Koo;Jang, Kab Yeol
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.353-360
    • /
    • 2017
  • In this study, the design and performance test of the air to water heat pump capable of producing hot water for greenhouse heating by using the surplus solar heat inside the greenhouse and the air heat outside greenhouse as the selective heat source were conducted. The heat storage operations using the surplus solar heat and the outside air heat were designed to be switched according to the setting temperature of the greenhouse in consideration of the optimum temperature range of the crop. In the developed system, it was possible to automatically control the switching of heat storage operation, heating and ventilation by setting 12 reference temperatures on the control panel. In the selective heat storage operation with the surplus solar heat and outside air heat, the temperature of thermal storage tank was controlled variably from $35^{\circ}C$ to $52^{\circ}C$ according to the heat storage rate and heating load. The heat storage operation times using the surplus solar heat and outside air heat were 23.1% and 30.7% of the experimental time respectively and the heat pump pause time was 46.2%. COP(coefficient of performance) of the heat pump of the heat storage operation using the surplus solar heat and outside air heat were 3.83 and 2.77 respectively and was 3.24 for whole selective heat storage operation. For the comparative experiment, the heat storage operation using the outside air heat only was performed under the condition that the temperature of the thermal storage tank was controlled constantly from 50 to $52^{\circ}C$, and COP was analyzed to be 2.33. As a result, it was confirmed that the COP of the heat storage operation using the surplus solar heat and outside air heat as selective heat source and the variable temperature control of the thermal storage tank was 39% higher than that of the general heat storage operation using the outside air heat only and the constant temperature control of the thermal storage tank.

A Study on Performance Improvement of Heat Pump Adopting the Hot Gas Bypass Method (고온냉매 우회방법을 적용한 열펌프의 성능 개선 연구)

  • Kang, Shin-Hyung;Byun, Ju-Suk
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.235-242
    • /
    • 2006
  • This study experimentally investigates the performance improvement of the heat pump by adopting the hot gas bypass method and using the internal heat exchanger according to the automatic defrost test conditions of ISO 5151 This study compares the hot gas bypass method with the time step method, and investigates effect on outdoor coil fan speed when the hot gas of compressor outlet enter outdoor coil inlet after the frost formation. The tests were made for the fan speeds of the outdoor coil controlled at 90, 60 and 30% of the normal speed together with the case of the stationary fan. The performance of the heat pump is evaluated by variables such as COP, heat capacity, and the average COP during the 210 minutes heating mode. Results show that average COP of the hot gas bypass mettled is $2.2{\sim}6%$ higher than that of the time step method. When the outdoor coil fan speed is 60% (780 rpm) of the normal speed, it shows the best COP and heating capacity.

Study on the Thermal Performance of a Solar Assisted Heat Pump System with a Hybrid Collector (태양열/공기열 복합 집열기를 가지는 하이브리드 히트펌프 시스템의 열성능에 관한 연구)

  • DO, KYU HYUNG;CHOI, BYUNG-IL;HAN, YONG-SHIK;KIM, MYUNGBAE;KIM, TAEHOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.182-191
    • /
    • 2016
  • In the present work, a solar assisted heat pump (SAHP) system with a hybrid collector was analyzed. For this, a simplified thermodynamic model was developed. Based on the proposed model, the heat transfer rate, COP, and the annual operating hour of the SAHP system were estimated. The effect of the variation of system design parameters on the performance of the system was also examined. From the results, the performance was improved with increasing the effectiveness of heat exchangers and decreasing the difference between the evaporation temperature and the outlet brine temperature of the hybrid collector loop. Finally, the performance of SAHP system with a hybrid collector was compared with that of conventional serial and parallel SAHP systems. The SAHP system with a hybrid collector was substantially better than a series system and slightly worse than a parallel system for both the yearly averaged heat transfer rate and COP. However, the annual operating hour of the SAHP system with a hybrid collector was much better than that of a parallel system.