• Title/Summary/Keyword: 공기역학적 평가

Search Result 100, Processing Time 0.028 seconds

A Performance Evaluation of Concrete for Low-carbon Eco-friendly PC Box for Near-surface Transit System (저심도 철도시스템 구축을 위한 저탄소 친환경 PC 박스용 콘크리트의 성능 평가)

  • Koh, Tae-Hoon;Ha, Min-Kook;Jung, Ho-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3587-3595
    • /
    • 2015
  • Low-carbon eco-friendly precast concrete (PC) box structure has been recently was developed as an low-cost infrastructure of near-surface transit system. The concrete of PC box was manufactured by industrial byproducts such as ground granulated blast furnace (GGBF) slag, flyash and rapid-cooling electric arc furnace (EAF) oxidizing slag, its mechanical property and durability were estimated in this study. Based on the mechanical and durability tests, it is found that low-carbon eco-friendly concrete shows high initial compressive strength, more than 90% of design strength (35MPa), and high resistance to salt-attack, chemical- attack and freeze-thaw. Therefore, low-carbon eco-friendly PC box concrete technology is expected to contribute to the railway with low environmental impact.

Change of Voice Handicap Index After Laryngeal Microsurgery for Benign Vocal Fold Lesions (양성 후두 질환 환자의 후두미세 수술 전후 음성 장애 지수의 변화)

  • Kim, Ji Hee;Choi, Hyo Geun;Park, Bumjung
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.26 no.1
    • /
    • pp.34-39
    • /
    • 2015
  • Background and Objectives:The Voice Handicap Index (VHI) evaluates the patients perception of impact of voice disorder in term of functional, physical, emotional factors. The purpose of this study was to evaluate the change of patient's subjective voice handicap index before and after laryngeal microsurgery for benign vocal cord lesions. Materials and Methods:We analyzed 55 patients who received laryngeal microsurgery for benign vocal cord disease from January 2011 to February 2013 retrospectively. There were 50 vocal nodules, 3 vocal polyps, 2 vocal cysts. VHI were analyzed before surgery and 3 months after surgery. Results:The VHI scores showed statistically significant reductions postoperatively in functional and emotional VHI (p=0.01 and p=0.034). Also, Emotional VHI score after microsurgery was higher in female than male [adjusted odd ratio (AOR)=0.292 ; 95% confidence interval, CI=0.098-0.869, p=0.01]. Conclusion:In other words, males experience significant more emotional effects that are improved after microscopic surgery.

  • PDF

The Aerodynamic Evaluation of Velopharyngeal Function after Uvulopalatopharyngoplasty (구개인두성형술 후 공기역학적 구개기능 평가)

  • Hong, Ki-Hwan;Lim, Hyun-Sil;Choi, Seung-Chul;Kim, Byum-Kyu;Lee, Sang-Heon;Kim, Hyun-Gi
    • Speech Sciences
    • /
    • v.9 no.2
    • /
    • pp.167-177
    • /
    • 2002
  • Uvulopalatopharyngoplasty (UPPP) is one of the popular surgical procedure for snoring and sleep apnea syndrome. The main principle of this procedure is to reduce abundant velopharyngeal soft tissues resulting in a shortened soft palate, which may cause some alterations in speech sound. The purpose of this study is to evaluate the change of velopharyngeal function after UPPP in the view of aerodynamics. Thirty three patients who received uvulopalatopharyngoplasty for correcting snoring and sleep apnea were included in this study. The airflow, airflow rate and air pressure during the production of oral and nasal consonants were measured before surgery and 4 week and 8 week after surgery. The oral air flows and pressures for oral and nasal consonants were not changed after surgery. However, oral air pressure for nasal consonants were increased significantly after surgery. The nasal air flows for oral consonants were not changed after surgery, but for nasal consonants were decreased at 8 weeks after surgery. The nasal flow rate for oral and nasal consonants were increased at 8 weeks after surgery. The uvulopalatopharyngoplasty may result in affecting the aerodynamic air streams during speech production.

  • PDF

A numerical study on the aerodynamic characteristics of a variable geometry throttle valve(VGTV) system controlling air-flow rate (유량 제어장치인 가변스로틀밸브의 기하학적 형상변화에 따른 공기역학 특성분석 연구)

  • Cho, Hyun-Sung;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.378-383
    • /
    • 2013
  • A butterfly throttle valve has been used to control the brake power of an SI engine by controlling the mass flow-rate of intake air in the induction system. However, the valve has a serious effect on the volumetric efficiency of the engine due to the pressure resistance in the induction system. In this study, a new intake air controlling valve named "Variable Geometry Throttle Valve(VGTV)" is proposed to minimize the pressure resistance in the intake system of an SI engine. The design concept of VGTV is on the application of a venturi nozzle in the air flow path. Instead of change of the butterfly valve angle in the airflow field, the throat width of the VGTV valve is varied with the operating condition of an SI engine. In this numerical study, CFD(computational fluid dynamics) simulation technique was incorporated to have an aerodynamics performance analysis of the two air flow controlling systems; butterfly valve and VGTV and compared the results to know which system has lower pressure resistance in the air intake system. From the result, it was found that VGTV has lower pressure resistance than the butterfly valve. Especially VGTV is effective on the low and medium load operating condition of an SI engine. The averaged pressure resistance of VGTV is about 49.0% lower than the value of the conventional butterfly throttle valve.

Effects of vocal aerobic treatment on voice improvement in patients with voice disorders (성대에어로빅치료법이 음성장애환자의 음성개선에 미치는 효과)

  • Park, Jun-Hee;Yoo, Jae-Yeon;Lee, Ha-Na
    • Phonetics and Speech Sciences
    • /
    • v.11 no.3
    • /
    • pp.69-76
    • /
    • 2019
  • This study aimed to investigate the effects of vocal aerobic treatment (VAT) on the improvement of voice in patients with voice disorders. Twenty patients (13 males, 7 females) were diagnosed with voice disorders on the basis of videostroboscopy and voice evaluations. Acoustic evaluation was performed with the Multidimensional voice program (MDVP) and Voice Range Profile (VRP) of Computerized Speech Lab (CSL), and aerodynamic evaluation with PAS (Phonatory Aerodynamic System). The changes in F0, Jitter, Shimmer, and NHR before and after treatment were measured by MDVP. F0 range and Energy range were measured with VRP before and after treatment, and the changes in Expiratory Volume (FVC), Phonation Time (PHOT), Mean Expiratory Airflow (MEAF), Mean Peak Air Pressure (MPAP), and Aerodynamic Efficiency (AEFF) with PAS. Videostroboscopy was performed to evaluate the regularity, symmetry, mucosal wave, and amplitude changes of both vocal cords before and after treatment. Voice therapy was performed once a week for each patient using the VAT program in a holistic voice therapy approach. The average number of treatments per patient was 6.5. In the MDVP, Jitter, Shimmer, and NHR showed statistically significant decreases (p < .001, p < .01, p < .05). VRP results showed that Hz and semitones in the frequency range improved significantly after treatment (p < .01, p < .05), as did PAS, FVC, and PHOT (p < .01, p < .001). The results for videostroboscopy, functional voice disorder, laryngopharyngeal reflux, and benign vocal fold lesions were normal. Thus, the VAT program was found to be effective in improving the acoustic and aerodynamic aspects of the voice of patients with voice disorders. In future studies, the effect of VAT on the same group of voice disorders should be studied. It is also necessary to investigate subjective voice improvement and objective voice improvement. Furthermore, it is necessary to examine the effects of VAT in professional voice users.

Effects of Aggregate Size and Steel Fiber Volume Fraction on Compressive Behaviors of High-Strength Concrete (골재크기 및 섬유혼입률에 따른 강섬유 보강 고강도 콘크리트의 압축거동)

  • Ahn, Kyung-Lim;Jang, Seok-Joon;Jang, Sang-Hyeok;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.229-236
    • /
    • 2015
  • This paper describes the effect of aggregate size on compressive behavior of high-strength steel fiber reinforced concrete. The Specified compression strength is 60 MPa and the range of fiber volume fraction is 0~2%. The main variable is the aggregate size, which was used for the aggregate size of 8 and 20 mm. So, ten concrete mixtures were prepared and tested to evaluate the fresh and hardened properties of SFRC at curing ages (7, 14, 28, 56 and 91 days), respectively. Items estimated in this study are the fresh properties (air contents, slump), hardened properties (compressive strength, modulus of elasticity, post-peak response and compressive toughness). As a result, the aggregate size has little effect on the compressive strength and modulus of elasticity. On the other hand, the ductile behavior was shown after post peak and the compressive toughness was increasing as decreasing the aggregate size. These effects are clearly represented in the fiber volume fraction 2%, which are the point appeared fiber ball. It is considered that the decreasing the aggregate size has effect on the fiber dispersibility.

Performance Evaluation of Organic and Inorganic Fiber Reinforced Concrete in Tunnel Lining Structure (유·무기 섬유 혼입 터널 라이닝 콘크리트 부재의 성능 평가)

  • Lee, Jong-Eun;Kim, Tae-Won;Kim, Su-Man;Jeon, Joong-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.110-118
    • /
    • 2009
  • The tunnel structure is widely used for transportation in the mountain area. To reduce the duration of construction and thus the expense, a tunnel excavation is often performed simultaneously with a tunnel lining in in-situ. However, cracking of the tunnel lining may occur arising from the vibrating impact in the excavation process. The present study concerns the role of steel fiber and nylon fibers in tunnel lining concrete to reduce the vibrating impact. As a result it was found that both the nylon fiber and steel fiber improved the durability and physical properties of concrete.

Numerical Study of Axial-flow Cyclone Cluster for Subway Station HVAC system (지하역사 공기조화기용 축류형 사이클론 클러스터의 수치해석적 성능 평가 연구)

  • Kim, Myeoung-Joon;Kim, Ho-Joong;Kim, Jin-Kwan;Kwon, Soon-Bark;Kim, Tae-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.757-761
    • /
    • 2009
  • Axial-flow cyclone separator cluster can be used for a dust removal device inside a heating, ventilation, and air conditioning(HVAC) system of subway station. In this study, 3-dimensional computational fluid dynamics(CFD) analysis was performed to compare single unit axial-flow cyclone with couple unit axial-flow cyclone cluster. It is shown that the performance of cyclone separator is not influenced by number of single units but influenced by ability of single unit.

  • PDF

An Experimental Study on the Physical and Mechanical Properties of Concrete Using Recycled Sand (순환잔골재를 활용한 콘크리트의 물리·역학적 특성에 관한 실험적 연구)

  • Kim, Jung-Ho;Sung, Jong-Hyun;Lee, Seung-Yeop;Kwon, Gu-Hyuk;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.359-365
    • /
    • 2017
  • This study examined concrete characteristics depending on the replacement ratio of recycled fine aggregates, which suits the KS F 2573 concrete recycled aggregate standard. As physical properties, slump, air content, changes in the elapse of time and compressive strength were studied in order to provide basic data for activation of recycled fine aggregate recycling. As a result of experimenting recycled fine aggregate concrete, the increase in the replacement ratio of recycled aggregates led to the increase in slump and air content. Also, when the replacement ratio of recycled fine aggregates was 30%, it was judged that there was no problem with constructability. When the replacement ratio was 30%, recycled fine aggregate concrete had a similar tendency to natural aggregate concrete at a compressive strength of 24MPa. When the replacement ratio was 30%, at a target strength of 24MPa, recycled fine aggregate concrete had the same physical characteristics as natural aggregate concrete. This means that a replacement ratio of 30% is appropriate for replacement of recycled fine aggregates. In future, there will be a need to improve the quality of recycled fine aggregates for activating the use of recycled fine aggregates and further research will have to evaluate physical properties of recycled fine aggregate concrete using improved recycled fine aggregates.

Design and Construction of the Burj Dubai Concrete Building Project (버즈 두바이 콘크리트 건물의 설계와 시공)

  • Abdelrazaq, Ahmad
    • Magazine of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.28-35
    • /
    • 2008
  • The Burj Dubai Project will be the tallest structure ever built by man; when completed the tower will be more than 700 meter tall and more than 160 floors. While the early integration of aerodynamic shaping and wind engineering considerations played a major role in the architectural massing and design of this multi-use/residential tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria, the material selection for the structural systems of the tower was also a major consideration and required detailed evaluation of the material technologies and skilled labor available in the market at the time Concrete was selected for its strength, stiffness, damping, redundancy, moldability, free fireproofing, speed of construction, and cost effectiveness. In addition, the design challenges of using concrete for the design of the structural system components will be addressed. The focus on this paper will also be on the early planning of the concrete works of the Burj Dubai Project.