• Title/Summary/Keyword: 공기역학적 감소

Search Result 98, Processing Time 0.027 seconds

A Study of Aerodynamical Effects for Determining the Distance between Track Centers by using Real Train Experiment (선로 중심간격 설정을 위한 실차 실험을 통한 공력 영향 연구)

  • Nam, Seong-Won;Kwon, Hyeok-Bin
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.487-491
    • /
    • 2007
  • When constructing a high-speed railroad, the reduction of the distance between track centers and the width of track bed will save the construction cost. However the shortening the distance between track centers may cause the stability problems due to higher wind pressure. Therefore the extensive technical review and aerodynamical study should be performed to determine the adequate distance between track centers. In this study, the impact that the increase in wind pressure due to the change of aerodynamic phenomena with the change of the distance between track centers may have on two trains passing by each other was predicted, and the stability of train operation was analyzed in order to review the distance between track centers suitable to Honam HSR trains. And we estimated the aerodynamical effects by the results of the real train experiments.

Experimental Study to Measure the Characteristics of KTX Train Wind Pressure by using Field Test (KTX 열차풍압 특성을 측정하기 위한 선로변 현장 실험 연구)

  • Nam, Seong-Won;Kwon, Hyeok-Bin;Nam, Yoon-Su
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.575-580
    • /
    • 2008
  • When constructing a high-speed railroad, the reduction of the distance between track centers and the width of track bed will save the construction cost. However the shortening the distance between track centers may cause the stability problems due to higher wind pressure. Therefore the extensive technical review and aerodynamical study should be performed to determine the adequate distance between track centers. In this study, the impact that the increase in wind pressure due to the change of aerodynamic phenomena with the change of the distance between track centers may have on two trains passing by each other was predicted, and the stability of train operation was analyzed in order to review the distance between track centers suitable to Honam HSR trains. And we estimated the aerodynamical effects by the results of the field test.

Aerodynamic analysis of automotive back shape design (자동차 후면형상에 따른 공력특성 분석)

  • Jeong, Hyeon-Seok;Lee, In-Deok;Kim, Su-Jin;Lee, Do-Hyeong
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.49-52
    • /
    • 2012
  • 21세기인 지금 우리시대에 자동차는 필수적인 교통수단이다. 이런 자동차의 구동을 위해서는 연료가 필요하며, 아직까지 석유가 그 연료의 중심이다. 그러나 지구에서 나오는 석유자원은 매장량의 한계가 보이며, 치솟는 가격뿐만 아니라 세계적으로 고연비 고효율 차량을 선호하기 때문에 연료소비를 최소화하는 방법을 찾아야 한다. 본 연구에서는 차량의 후면 형상에 중점을 두어 주행 시 발생하는 공력특성 중 항력을 감소시키기 위해 EDISON 시뮬레이션 프로그램으로 자동차의 후면 형상 변화에 따른 공력특성 해석과 주행 시 가장 효율적인 최적의 후면 형상을 찾아보았다.

  • PDF

Oxygen Transfer and Hydraulic Characteristics in Bubble Column Bioreactor Applied Fine Bubble Air Diffusing System (미세기포 산기장치를 적용한 타워형 생물반응기의 산소전달 및 수력학적 특성)

  • Lee, Seung-Jin;Ko, Kyeong-Han;Ko, Myeong-Han;Yang, Jae-Kyeong;Kim, Yong-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.772-779
    • /
    • 2012
  • For improving performance of conical air diffuser generating fine bubble, both experimental and numerical simulation method were used. After adapting diffusers inner real scale bubble column, suitable for various diffuser submergence, the effect of diffuser submergence on oxygen transfer performance such as Oxygen Transfer Coefficient ($K_{L}a_{20}$) and Standard Oxygen Transfer Efficiency (SOTE) was investigated empirically. As flow patterns for various diffuser number and submergence were revealed throughout hydrodynamic simulation for 2-phase fluid flow of air-water, the cause of the change for oxygen transfer performance was cleared up. As results of experimental performance, $K_{L}a_{20}$ was increased slightly by 7% and SOTE was increased drastically by 39~72%, 5.6% per meter. As results of numerical analysis, air volume fraction, air and water velocity in bioreactor were increased with analogous flow tendency by increasing diffuser number. As diffuser submergence increased, air volume fraction, air and water velocity were decreased slightly. Because circulative co-flow is determinant factor for bubble diffusion and rising velocity, excessive circulation intensity can result to worsen oxygen transfer by shortening bubble retention time and amount.

A Study on the Trends of Virtual Reality Application Technology for Agricultural Education (가상현실 응용기술의 동향 분석을 통한 국내 시설농업의 교육용 가상현실 활용방안 고찰)

  • Kim, Jun-Gyu;Lee, In-bok;Yoon, Kwang-Sik;Ha, Tae-hwan;Kim, Rack-woo;Yeo, Uk-hyeon;Lee, Sang-yeon
    • Journal of Bio-Environment Control
    • /
    • v.27 no.2
    • /
    • pp.147-157
    • /
    • 2018
  • With the rapid development of the 4th industrial revolution, the large-sized facilities of agriculture have been developed with high-technologies. However, it is difficult to maintain the optimum environment in large-sized facilities. Although it is essential to control micro-climate properly in large-sized facilities, there are a lot of problems to utilize high-technologies and equipment because of insufficient education for farmers. Most farms have limitations to access to their farm because of prevention of epidemics, exposure of management know-how, and so on. Especially, it is difficult to understand internal environmental factors (airflow, temperature, humidity, etc.) for farmers because these factors are invisible. Recently, Virtual reality technology which allows users to experience various phenomena directly is attracting attention. Virtual reality is very useful technology to visualize airflow and temperature distribution and so on. However, there is no cases applied this technology to agricultural facilities. In this study, research trends of virtual reality in various fields were investigated. In particular, the limitation and possibility of virtual reality technology were analyzed for educating farmers. Finally, the development of virtual reality contents for smart-farm facility were suggested.

Characteristics of Tracw Elements in PM 2.5/PM 10 in Daejeon $\3{cdot}4$ Instrial Complex (대전 3ㆍ4 공단의 PM 2.5/PM 10내 미량원소의 특성)

  • 이현석;임종명;이진홍;문종화;정용삼
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.335-336
    • /
    • 2003
  • 미세입자는 오염된 도심지역 분진수의 90~99%에 이르는 높은 비율을 보이고 있고, 폐 깊숙이 침투하여 폐암을 비롯한 폐질환을 일으킬 수 있다. 더욱이 동일 질량의 분진인 경우 입자의 크기가 감소함에 따라 미세 입자의 표면적은 급증하기 때문에 As, Cr(Ⅵ), Cd등과 같은 발암 중금속을 쉽게 흡착하여 미세 입자가 인체에 미치는 영향은 거대입자에 비하여 매우 크다. 따라서 미국은 1990년대부터 미세 분진의 입경별 위해성을 집중적으로 연구하여 공기 역학적 직경이 10$\mu\textrm{m}$이하인 PM 10 기준과 더불어 PM 2.5 기준을 신설하였다. (중략)

  • PDF

A Numerical Study of Aerodynamic Characteristics in Oscillating Airfoils along Frequencies and Amplitude (진동하는 익형의 진동수와 받음각 진폭에 따른 공력특성)

  • Lee, Gang-Mun;Park, Jae-Yeong;Lee, Seong-Gi
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.569-574
    • /
    • 2015
  • 지난 수십 년간 유체역학적인 관점에서 곤충이나 새의 움직임을 모방하기 위해 진동하는 익형(pitching airfoil)과 동적 실속에 관한 많은 연구가 진행되어 왔다. 그러나 유동박리가 일어나지 않는 범위 내에서 진동하는 익형의 특성에 대한 연구는 보기 드물다. 또한 기존의 유동박리가 일어나지 않는 영역에서 익형의 진동 현상에 대해 수행된 연구는 수중과 같이 낮은 레이놀즈수에서 수렴되었기 때문에, 공기 중과 같이 높은 레이놀즈수에서 유동현상과 다른 특성을 보여주고 있을 수 있다. 따라서 본 연구는 높은 레이놀즈수에서의 다양한 환산 진동수, 받음각진폭, 익형에 따른 공력특성을 분석하였다. 그 결과, 익형의 진동으로 인한 양력계수의 차이는 작음을 알 수 있었다. 그러나 높은 환산 진동수에서 익형의 항력계수가 감소하는 경향이 나타나며, 이로 인해 높은 환산 진동수에서 수치적으로 추력이 발생할 수 있음을 확인하였다.

  • PDF

A Study on the Properties of Recycled Concrete Using Recycled Fine Aggregates with different Removal formulas of Powder In Aggregate (미분 제거방식이 다른 2종의 재생 잔골재가 콘크리트외 특성에 미치는 영향)

  • Lee Mun-Hwan;Lee Sea-Hyun;Shim Jong-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.95-104
    • /
    • 2005
  • The research conducted to study the potential practicability of recycled aggregate concrete by analyzing the characteristics of concretes made of recycled quality aggregates produced by wet and dry process has found the following results. The air content of recycled aggregate concrete increased with increase of the substitut on rate due to mortar included while producing recycled aggregates. However, the concretes with aggregate produced by dry process had relatively low rate of increase in air content. The slump showed generally decreasing trend as the substitution rate of recycled aggregate increased regardless of the wet or dry process. It was assumed that the mortar particles remained in recycled aggregate absorbed the surplus hydration in concrete and decreased fluidity The compressive strength generally decreased as the substitution rate of recycled aggregate increased, however there was an increasing trend as well due to decreasing effect of water-cement ratio when the substitution rate of recycled aggregate reached 25, 50% after mix. This phenomena also appeared in early age, which meant that recycled aggregate concrete should not be retarded in setting when applied in the field. The tensile strength also reached the maximum when wet or dry recycled aggregate replaced with 25%. To conclude, recycled aggregates for concrete produced by wet or dry process are expected to demonstrate essential characteristics of concrete without significant decline in physical or dynamic quality when the substitution rate is below 25% although there are variations subject to water-cement ratio. However, slight differences are expected due to types of recycled aggregate and physical quality.

Properties of Undispersed Underwater Mortar Using the Expansive Additives and Fly Ash (팽창재 및 플라이애쉬를 이용하는 수중불분리 모르터의 특성)

  • 한천구;이대주;이광설;한일영;권지훈;유홍종
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.223-231
    • /
    • 1998
  • Existing cast in place piles made by grouting cement mortar have many problems that cracks by autogeneous and drying shrinkage bring about the deterioration of force for piles, segregations by the submersion of ground water occur and also, high cement contents lead to rise the manufacturing cost. Therefore, this study is intended to investigate the mechanical properties of high performance mortar, incorporating expansive additives and fly ash. for cast in place piles. According to the experimental results, as the contents of expansive additives increase in mortar mixture, fluidity decrease and air contents shows inverse tendency. Setting time is delayed. Although compressive strength at 7days shows a decline tendency. compressive strength at 28days and 91days increase slightly with 5% of expansive additives. As fly ash increase in mortar mixture, high fluidity is shown, air contents increase and setting time is delayed at fresh state, and additives are, the larger length change is, whereas shrinkage decrease with the increase of fly ash.

Blade shape optimization of centrifugal fan for improving performance and reducing aerodynamic noise of clothes dryer (의류 건조기 성능 향상과 공력소음 저감을 위한 원심팬의 날개 형상 최적화)

  • Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Min-kyu;Lee, Kwangho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.321-327
    • /
    • 2019
  • The purpose of this study is paper is to improve the flow performance and to reduce the aerodynamic noise of air discharge system consisting of a centrifugal fan, ducts and a housing for the clothes dryer. Using computational fluid dynamics and acoustic analogy based on FW-H (Ffowcs-Williams and Hawkings) Eq., air flow field and acoustic fields of the air discharge system are investigated. To optimize aerodynamic performance and aerodynamic noise, the response surface method is employed. The two factors central composite design using the inflow and outflow angles of fan blades is adopted. The devised optimum design shows the reduction of turbulent kinetic energy in the ducts and the housing of the system, and as a result, the improved flow rate and reduce noise is confirmed. Finally, the experment using the proto-type manufactured usign the optimum design shows the increase of flow rate by 4.2 %.