• Title/Summary/Keyword: 공기스프링 방진대

Search Result 4, Processing Time 0.018 seconds

Active Control of air-spring vibration isolator (공기스프링 방진대의 능동제어)

  • 송진호;김규용;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.117-124
    • /
    • 1993
  • 본 연구에서는 공기스프링을 능동요소로 사용한 방진대를 1자유도 및 2자유도로 모델링하여 이론해석을 수행하였고, 이에 따른 컴퓨터시뮬레이션과 실험을 통하여 이론의 타당성을 검증하였다. 다음으로 공기스프링 방진대의 방진성능 향상을 위하여 비례제어밸브, 컴퓨터, 측정센서 등을 이용하여 공기 스프링내의 공기압력을 능동적으로 조절할 수 있는 제어계를 구성한 후, 최적제어 및 퍼지제어 알고리즘을 적용하여 상태귀환 제어를 실시하였다.

  • PDF

Active Control of Air-Spring Vibration Isolator (공기스프링 방진대의 능동제어)

  • 송진호;김규용;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1605-1617
    • /
    • 1994
  • Air-spring is widely used in vibration isolation to reduce the table vibration. When a disturbance is applied to a table, however, it starts virbrating with a low frequency, but has a large displacement due to the reacting force of air-spring. In this study, to solve the table vibration problem, an active vibration control device based on state feedback control using air-spring and proportional control valves was designed. This device can suppress the displacement of the isolation table within allowable range, even any kind of disturbances are applied to the table. Firstly, theoretical analysis of an air-spring isolator was done. Secondly, characteristics of the isolator was investigated via computer simulation and experiment. Finally, active control of air-spring isolator was tested using optimal(LQG) and fuzzy control algorithms was performed to show the effectiveness of the control schems.

A Study on Dynamic Modeling of the Vibration Isolation System for the Ultra Precision Measurement (초정밀작업을 위한 제진시스템의 동역학 모델링 연구)

  • Son, Sung-Wan;Jang, Sung-Ho;Baek, Jae-Ho;Chun, Chong-Keun;Kwon, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • The anti-vibration tables that use air suspensions as dampers have been widely used due to their high anti-vibration performance in wide frequency band. However, they face a problem of easily accelerating the vibration when triggered by external force because their air suspensions have low rigidity and dampness. In response, there has been a study on active/semi-active dampers that use only the passive components like air suspensions to complement the passive-control format. Thus, we have dynamically analyzed the active/semi-active control of such passive anti-vibration tables. To demonstrate the anti-vibration table's control system, we have also constructed a kinetic model based on the physical characteristics of an anti-vibration table with 6 degrees of freedom and verified its applicability through analysis and experiments.

Active Control of Isolation Table Using $H_\infty$ Control ($H_\infty$ 제어를 이용한 방진대의 능동제어)

  • Kim, Kyu-Young;Yang, Hyun-seok;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3079-3094
    • /
    • 1996
  • Recently, the high-precision vibration attenuation technology becomes the essence fo the seccessful development of high-integrated and ultra-precision industries, and is expected to continue playing a key role in the enhancement of manufacturing technology. Vibration isolation system using an air-spring is widely employed owing to its excellent isolation characteristics in a wide frequency range. It has, however, some drawbacks such as low-stiffness and low-damping features and can be easily excited by exogenous disturbances, and then vibration of table is remained for a long time. Consequently, the need for active vibration control for an air-spring vibration isolation system becomes inevitable. Furthermore, for an air-spring isolation table to be successfully employed in a variety of manufacturing sites, it should have a guaranteed robust performance not only to exogenous disturbances but also to uncertainties due to various equipments which might be put on the table. In this study, an active vibration suppression control system using H.inf. theory is designed and experiments are performed to verify its robust performance. An air-spring vibration isolation table with voice-coil-motors as its actuators is designed and built. The table is modeled as 3 degree-of-freedom system. An active control system is designed based on $H_\infty$control theory using frequency-shaped weighting functions. Analysis on its performance and frequency responce properties are done through numerical simulations. Robust characteristics of$H_\infty$ control on disturbances and model uncertainties are experimentally verified through (i) the transient response to the impact excitation of the table, (ii) the steady-state response to the harmonic excitation, and (iii) the response to the mass change of the table itself. An LQG controller is also designed and its performance is compared with the $H_\infty$ controller.