• Title/Summary/Keyword: 공극시험

Search Result 427, Processing Time 0.029 seconds

Determination of Rock Abrasiveness using Cerchar Abrasiveness Test (세르샤 마모시험을 통한 암석의 마모도 측정에 관한 연구)

  • Lee, Su-Deuk;Jung, Ho-Young;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.284-295
    • /
    • 2012
  • Abrasiveness of rock plays an important role on the wear of rock cutting tools. In this study, Cerchar abrasiveness tests were carried out to assess the abrasiveness of 19 different Korean rocks. Cerchar abrasiveness test is widely used to assess the abrasiveness of rock because of its simplicity and inexpensive cost. This study examines the relationship between Cerchar Abrasiveness Index (CAI) and mechanical properties (uniaxial compressive strength, Brazilian tensile strength, Young's modulus, Poisson's ratio, porosity, shore hardness of rock), and the effect of quartz content, equivalent quartz content, which was obtained from XRD analysis. As a result of test, CAI was more influenced by petrographical properties than by the bonding strength of the matrix material of rock. CAI prediction model which consisted of UCS and EQC was proposed. CAI decreased linearly with the hardness of the steel pin. Numerical analysis was performed using Autodyn-3D for simulating the Cerchar abrasiveness test. In the simulations, most of pin wear occurred during the initial scratching distance, and CAI increased with the increase of normal loading.

Carbonation Assessment of High-Strength Concrete Using Polypropylene Fiber after Fire Damage (폴리프로필렌 섬유를 혼입한 고강도 콘크리트의 화재피해 후 중성화 평가)

  • Byun, Yong-Hyun;Ryu, Dong-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.235-243
    • /
    • 2020
  • In recent years, the use of high-strength concrete has increased with increasing height and enlarging scale of the buildings However, it has been pointed out that the use of high-strength concrete is the most serious problem compared to ordinary concrete in terms of the spalling of concrete cross sections caused by fires. For this reason, fiber cocktail methods, which are made of polypropylene fibers, nylon fibers, etc., are mainly used to improve the fire resistance performance. However, the majority of research on high-strength concrete to which the fiber cocktail method was applied is mainly focused on the effect of reducing spalling, and few studies have investigated and analyzed the effect of micropores produced by melting PP fibers on the long-term durability of high-strength concrete after a fire. Therefore, in this study, the effect of micropores on the depth of carbonation was examined through carbonation tests and microstructure analysis, assuming high-strength concrete to which fiber-mixed construction method was applied, which caused fire damage.

Weathering of Rock Specimens Exposed to Recurrent Freezing and Thawing Cycles (동결-융해 풍화에 의한 암석 물성 변화 양상과 추정에 관한 연구)

  • Ryu, Sung-Hoon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.276-283
    • /
    • 2012
  • Changes in rock properties due to freezing and thawing cycles ranging from $-20^{\circ}C$ to $10^{\circ}C$ were checked for the typical Korean rocks: granite (weathered), limestone, sandstone, tuff, shale and basalt. The porosity, seismic velocity, shore hardness and specific gravity were measured every 10 cycles for each type of rock up to 40 cycles. The specific gravity was rarely changed. Granite (w), shale and basalt decreased gradually in their shore hardness and seismic velocity values, these values for limestone, sandstone and tuff changed only a very little. The porosity increased in the granite (w), shale and basalt, whereas in the others it did not change. Due to the low tensile strength with high porosity, granite (w), shale and basalt were susceptible to the F-T cycles. A linear regression equation was calculated based on the experiment results according to properties and types of rock. The relationship between the freeze-thaw sensitivity (=initial porosity/initial tensile strength) and the coefficients of the regression equation was examined. With additional experimental data, the coefficients of the regression equation can be estimated using the F-T sensitivity. This makes it possible to predict the properties of rock as affected by freeze-thaw weathering by only measuring the initial properties without knowledge of the regression equation coefficients for each type of rock.

Mechanical Properties Evaluation of 3D Printing Recycled Concrete utilizing Wasted Shell Aggregate (패각 잔골재를 활용한 3D 프린팅 자원순환 콘크리트의 역학적 성능 평가)

  • Jeewoo Suh;Ju-Hyeon Park;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.33-40
    • /
    • 2024
  • The volume of shells, a prominent form of marine waste, is steadily increasing each year. However, a significant portion of these shells is either discarded or left near coastlines, posing environmental and social concerns. Utilizing shells as a substitute for traditional aggregates presents a potential solution, especially considering the diminishing availability of natural aggregates. This approach could effectively reduce transportation logistics costs, thereby promoting resource recycling. In this study, we explore the feasibility of employing wasted shell aggregates in 3D concrete printing technology for marine structures. Despite the advantages, it is observed that 3D printing concrete with wasted shells as aggregates results in lower strength compared to ordinary concrete, attributed to pores at the interface of shells and cement paste. Microstructure characterization becomes essential for evaluating mechanical properties. We conduct an analysis of the mechanical properties and microstructure of 3D printing concrete specimens incorporating wasted shells. Additionally, a mix design is proposed, taking into account flowability, extrudability, and buildability. To assess mechanical properties, compression and bonding strength specimens are fabricated using a 3D printer, and subsequent strength tests are conducted. Microstructure characteristics are analyzed through scanning electron microscope tests, providing high-resolution images. A histogram-based segmentation method is applied to segment pores, and porosity is compared based on the type of wasted shell. Pore characteristics are quantified using a probability function, establishing a correlation between the mechanical properties and microstructure characteristics of the specimens according to the type of wasted shell.

Velocity-effective stress response of $CO_2$-saturated sandstones ($CO_2$로 포화된 사암의 속도-유효응력 반응)

  • Siggins, Anthony F.
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.60-66
    • /
    • 2006
  • Three differing sandstones, two synthetic and one field sample, have been tested ultrasonically under a range of confining pressures and pore pressures representative of in-situ reservoir pressures. These sandstones include: a synthetic sandstone with calcite intergranular cement produced using the CSIRO Calcite In-situ Precipitation Process (CIPS); a synthetic sandstone with silica intergranular cement; and a core sample from the Otway Basin Waarre Formation, Boggy Creek 1 well, from the target lithology for a trial $CO_2$ pilot project. Initial testing was carried on the cores at "room-dried" conditions, with confining pressures up to 65 MPa in steps of 5 MPa. All cores were then flooded with $CO_2$, initially in the gas phase at 6 MPa, $22^{\circ}C$, then with liquid-phase $CO_2$ at a temperature of $22^{\circ}C$ and pressures from 7 MPa to 17 MPa in steps of 5 MPa. Confining pressures varied from 10 MPa to 65 MPa. Ultrasonic waveforms for both P- and S-waves were recorded at each effective pressure increment. Velocity versus effective pressure responses were calculated from the experimental data for both P- and S-waves. Attenuations $(1/Q_p)$ were calculated from the waveform data using spectral ratio methods. Theoretical calculations of velocity as a function of effective pressure for each sandstone were made using the $CO_2$ pressure-density and $CO_2$ bulk modulus-pressure phase diagrams and Gassmann effective medium theory. Flooding the cores with gaseous phase $CO_2$ produced negligible change in velocity-effective stress relationships compared to the dry state (air saturated). Flooding with liquid-phase $CO_2$ at various pore pressures lowered velocities by approximately 8% on average compared to the air-saturated state. Attenuations increased with liquid-phase $CO_2$ flooding compared to the air-saturated case. Experimental data agreed with the Gassmann calculations at high effective pressures. The "critical" effective pressure, at which agreement with theory occurred, varied with sandstone type. Discrepancies are thought to be due to differing micro-crack populations in the microstructure of each sandstone type. The agreement with theory at high effective pressures is significant and gives some confidence in predicting seismic behaviour under field conditions when $CO_2$ is injected.

Evaluation on Structural Stiffness and Grouting Efficiency of Concrete Track using Elastic Wave Tests (탄성파 기법을 이용한 콘크리트궤도의 구조강성 및 충전상태 평가에 관한 연구)

  • Lee, Il-Wha;Joh, Sung-Ho;Jang, Seung-Yup
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.55-64
    • /
    • 2009
  • Recently, concrete track is replacing ballast track for efficient and economic maintenance of track. It considerably offer less maintenance, a longer service life and reduced life-cycle costs. With the aim of achieving high-quality track construction work, of developing tools for quality assurance in new construction and for later technical inspection of material condition, a quality strategy has to be developed. For these purpose, NDT which is using the seismic wave has carried out in situ studies in the test construction section. The used NDT are SASW test, impact echo test and continuous impact echo test. The test is performed 5,353 times on 49 pre-cast concrete track panels to verify the stiffness structure and grouting efficiency of the track structure. To conclude, because of the non-homogeneous characteristic of concrete material. it is restricted to apply the elastic wave test at some aspect. However it is possible to acquisite a sufficient reliability about structural stiffness and grouting efficiency of concrete track.

Determination of Valid Dynamic Stability in Wheel Tracking Test of Asphalt Concretes (아스팔트 콘크리트 반복주행 시험에서의 동적안정도 정립에 관한 연구)

  • Kim, K.W.;Kim, J.E.;Kim, B.C.;Doh, Y.S.
    • International Journal of Highway Engineering
    • /
    • v.6 no.3 s.21
    • /
    • pp.37-46
    • /
    • 2004
  • This study was performed to establish valid methodology for determining dynamic stability(DS) of deformation-cycle curve which is obtained through wheel tracking(WT) test, the most widely used method for forecast of rutting tendency of asphalt mixture. Existing Korean and Japanese methods for DS are unrealistic and do not really reflect characteristics of rut resistance of asphalt concretes especially when the slope of deformation-cycle curve is stabilized at the end. It was proved that the new DS developed in this study reflected rut resistance characteristics better than existing methods. It is especially effective to distinguish the mixtures with high DR(depth of rut) but stable slope at the end of curve from the mixture with lower DR and continuous slope. The field evaluation must be followed to prove whether the mixture which shows a high DS value this method perform well in the filed.

  • PDF

Bond between Reinforcing Bars and Recycled Coarse Aggregate Concrete with respect to Reinforcement Location (철근의 위치에 따른 이형철근과 순환굵은골재 콘크리트의 부착특성)

  • Yun, Hyun-Do;Lee, Min-Jung;Jang, Yong-Heon;Bae, Kee-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1093-1096
    • /
    • 2008
  • This study investigated the bond behavior between recycled coarse aggregate (RCA) concrete and deformed reinforcing bars. The position (i.e., vertical, horizontal) and the location (i.e., 375mm, 225mm and 75 mm) of deformed bar were considered as a main test parameter in this paper. From the test results, it was found that maximum bond strength of top reinforcement was decreased compared with that of bottom reinforcement. Also bar embedded horizontally 225mm above from base could not satisfy bond strength requirement provided in CEB-FIP code. It was caused by the fact that bonded area at the bottom of horizontal reinforcement was significantly reduced by the poring water and laitance. In this specimen, the bond strength provided by bearing stress and wedging action of concrete was not fully observed.

  • PDF

Bleed Test for Mortar using Pressure Filter (가압 거름방법에 의한 모르타르의 블리딩 측정 방법)

  • Shin, Kyung-Joon;Choi, Seul-Woo;Choi, Sung;Lee, Kwang-Myong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.809-812
    • /
    • 2008
  • Bleed test methods currently being specified in KS, ASTM and BS are the methods to read the height of bleed water and volume changes of mortar poured into transparent cylinder. Time for measuring of bleed are specified as 3, 20 hours in KS specification, while bleed is measured at 3 hour and change of volume is measured at 24 hour in ASTM and BS specification. Like these, bleed test takes a lot of time to conduct. Another method to measure the bleed is the pressure filter test. This method predict the bleed by measuring the passed water through the fiber glass filter under pressure. This pressure filter test developed by Schupack in 1971 has an advantage in predicting the bleed in shorter time. However, data correlating the pressure filter test results with amount of bleed are limited. Therefore, this study aims at verifying the availability of pressure filter test as a method to predict the bleed and deriving the relation between this test results and bleed.

  • PDF

A Study on the Stabilization of Coal Ash Ground by Geotechnical Engineering Analysis Cam-clay model for Deformation Analysis of Coal Ash Ground (토질공학적 해석방법에 의한 석탄회 폐기물지반의 안정처리에 관한 연구 -지반변형해석을 위한 Cam-clay model을 중심으로)

  • 천병식
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.81-92
    • /
    • 1998
  • Coal ash from thermal power plants has been produced in large quantity and discarded uselessly, However, it is possible to supply construction material properly by utilizing the coal ash as construction material. In this study, the applicable model and its applicability for deformation analysis of coal ash fill and reclamation ground are studied. Camflay model gives complete constitutive law which illustrates deformation and pore water pressure while soil is loaded under the various stresses at drained and undrained conditions. The merit of proposed model which is acquired from laboratory tests is that only a few soil parameters are available. The whole parameters of Camflay model are obtained by typical mechanical test and CV triaxial test on the sample with optimum mixing ratio( i.e. fly ash : bottom ash=5:5) Then the results from proposed numerical analysis are compared with laboratory results. The differences between laboratory test and numerical analysis are negligible. Parameters deter mined from laboratory tests are useful as a basic data for deformation analysis of coal ash reclamation ground using Camflay model.

  • PDF