• Title/Summary/Keyword: 공극비

Search Result 795, Processing Time 0.033 seconds

Carbon-capture Performance of foam Concrete Using Stainless Steel Slag (스테인리스 스틸 AOD 슬래그를 이용한 폼 콘크리트의 탄소포집 성능)

  • Kim, Byung Jun;Yoo, Sung Won;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.18-25
    • /
    • 2020
  • The purpose of this study is to investigate the mechanical and carbon-capture properties of foam concrete containing stainless steel argon oxygen decarbonization(AOD) slag. AOD slag was used as a binder, and foam concrete having a foaming ratio of 69 ± 0.5 % and a slurry density of 573.2 to 578.6 kg / ㎥ was produced. In order to examine the effect of carbonation, blended specimen was cured by two types : normal curing and CO2 curing. As a result of the experiment, the specimens incorporating AOD slag showed higher compressive strength than Plain after CO2 curing. According to the analysis of the image of foam concrete, it was confirmed that the ST30 has a lower total pore volume and average pore size than plain, resulting in high compressive strength. The SEM analysis confirmed the formation of calcite by carbonation of AOD slag. Through the thermogravimetric analysis, the increase of CO2 uptake was confirmed by the incorporation of AOD slag. Foam concrete has a higher porosity than normal concrete, so it is expected that carbon-capture performance can be improved by using a AOD slag.

Investigation of fault in the Kyungju Kaekok-ri area by 2-D Electrical Resistivity Survey (2차원 전기비저항 탐사를 이용한 경주 개곡리 지역의 단층조사)

  • Lee, Chi-Seop;Kim, Hee-Joon;Kong, Young-Sae;Lee, Jung-Mo;Chang, Tae-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.4
    • /
    • pp.124-132
    • /
    • 2001
  • Electrical resistivity survey has been conducted for delineating geological fault structure in Kaekok-ri near Kyungju. In general, electrical resistivity survey has an advantage of searching buried faults and its traces compared with other geophysical survey methods. Distribution of electrical conductivity in the ground is influenced by the ratio of pores, groundwater and clay minerals. These properties are evidenced indirectly to explain for weathering condition, faults and fracture Bones. Thus the electrical resistivity survey can be an effective method to find buried faults. We have carried out two dimensional (2-D) interpretation by means of smoothness-constrained least-squares and finite element method. Field data used in this paper was acquired at Kaekok-ri, Wuedong-eup, Kyungju-si, where is Ulsan Fault and is close to the region in which debatable quaternary fault traces were found recently. The dipole-dipole array resistivity survey which could show the 2-D subsurface electrical resistivity structure, was carried out in the area with three lines. The results showed good property of fault, fracture zone and fault traces which we estimated were congruous with the results. Through this study, 2-D electrical resistivity survey interpretation for fault is useful to apply.

  • PDF

Interpretation of Geophysical and Engineering Geology Data from a Test Site for Geological Field Trip in Jeungpyung, Chungbuk (충북 증평 지질학습장 시험부지에 대한 물리탐사 및 지질공학 자료의 해석)

  • Kim, Kwan-Soo;Yun, Hyun-Seok;Sa, Jin-Hyeon;Seo, Yong-Seok;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.339-352
    • /
    • 2016
  • The best way of investigating the physical and mechanical properties of subsurface materials is the combined interpretation of data from borehole geophysical surveys and geotechnical experiments with rock samples. In this study two surface seismic surveys with refraction and surface-wave method are alternatively conducted for downhole seismic surveys in test site for geological field trip in Jeungpyung, Chungbuk. P- and S-wave velocity structures are delineated by refraction and MASW (multichannel analysis of shear waves) methods, respectively. Possion's ratio section, reconstructed from P- and S-wave velocities, is correlated to the outcrop geological features consisting of reddish sedimentary rock, gray volcanic rock, and joints/fractures. In addition, rock samples representative for reddish sedimentary and gray volcanic features are geotechnically analyzed to provide physical, mechanical properties, and elastic modulus. Dynamic elastic moduli estimated from geophysical data is found to be higher than the one from geotechnical data. Reddish sedimentary rock characterized with low porosity and moisture content corresponds to the zone of low electrical resistivities and their small variations in the resistivity sections between the rainy and dry days. This trend suggests that the weathered gray volcanic rock and the nearby fractures with higher low porosity and moisture content are interpreted to be good carrier especially in rainy season.

Zeolitization of the Dacitic Tuff in the Miocene Janggi Basin, SE Korea (장기분지 데사이트질 응회암의 불석화작용)

  • Kim, Jinju;Jeong, Jong Ok;Shinn, Young-Jae;Sohn, Young Kwan
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.63-76
    • /
    • 2022
  • Dacitic tuffs, 97 to 118 m thick, were recovered from the lower part of the subsurface Seongdongri Formation, Janggi Basin, which was drilled to assess the potential for underground storage of carbon dioxide. The tuffs are divided into four depositional units(Unit 1 to 4) based on internal structures and particle componentry. Unit 1 and Units 3/4 are ignimbrites that accumulated in subaerial and subaqueous settings, respectively, whereas Unit 2 is braided-stream deposits that accumulated during a volcanic quiescence, and no dacitic tuff is observed. A series of analysis shows that mordenite and clinoptilolite mainly fill the vesicles of glass shards, suggesting their formation by replacement and dissolution of volcanic glass and precipitation from interstitial water during burial and diagenesis. Glass-replaced clinoptilolite has higher Si/Al ratios and Na contents than the vesicle-filling clinoptilolite in Units 3. However, the composition of clinoptilolite becomes identical in Unit 4, irrespective of the occurrence and location. This suggests that the Si/Al ratio and pH in the interstitial water increased with time because of the replacement and leaching of volcanic glass, and that the composition of interstitial water was different between the eastern and western parts of the basin during the formation of the clinoptilolite in Units 1 and 3. It is also inferred that the formation of the two zeolite minerals was sequential according to the depositional units, i.e., the clinoptilolite formed after the growth of mordenite. To summarize, during a volcanic quiescence after the deposition of Unit 1, pH was higher in the western part of the basin because of eastward tilting of the basin floor, and the zeolite ceased to grow because of the closure of the pore space as a result of the growth of smectite. On the other hand, clinoptilolite could grow in the eastern part of the basin in an open system affected by groundwater, where braided stream was developed. Afterwards, Units 3 and 4 were submerged under water because of the basin subsidence, and the alkali content of the interstitial water increased gradually, eventually becoming identical in the eastern and western parts of the basin. This study thus shows that volcanic deposits of similar composition can have variable distribution of zeolite mineral depending on the drainage and depositional environment of basins.

Unsteady Aerodynamics of Flat Plate with Porous Trailing-edge (다공성 표면 평판 끝 단 위의 비정상 공력 특성에 대한 연구)

  • Jeong, Ye-Eun;Moon, Young-J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.134-137
    • /
    • 2008
  • In this study, a computational analysis is conducted to investigate the effects of porous surfaces on the lift and drag forces of the flat plate. With the porous treatment, it is found that the strength of the Karman vortex as well as its influences over the trailing-edge surface are much weakened, resulting in significant reduction of the pressure fluctuations over the flat plate. The drag and lift coefficients are decreased by 85% and 18%, respectively, compared to the solid surface. The computed results also indicate that the size of the porous surface area does not have much influences but the back side of the flat plate has non-negligible effects on the interaction between the wall and the Karman vortex. As a result, the lift coefficient for the solid back side case is decreased only by 50.5% compared to the solid case and the drag coefficient is even increased by 65%.

  • PDF

Nonlinear Impedance Characteristics of Helmholtz Resonator with Tapered Neck (경사진 목을 가지는 헬름홀쯔 공명기의 비선형 임피던스 특성)

  • Seo, Sang-Hyeon;Chung, Hoe-min;Kim, Yang-hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.75-80
    • /
    • 2012
  • Helmholtz resonator is widely used acoustic instrument which has high absorption characteristics at its resonance frequency. Particularly it maintains good performance even in the low frequency region that is difficult to control by general porous absorptive materials. However, under severely high sound pressure level, the absorption characteristics are changed by increase of resistance due to nonlinear behavior of neck impedance. Because of this nonlinear behavior, it is difficult to obtain the expected absorption performance under high sound pressure environment. Thus, in order to prevent excessive rise of resistance, the resonator with neck having cross section dimension decrease away from the entry of the resonator cavity could be suggested. This paper introduces the experiment method and results about nonlinear characteristics of Helmholtz resonator with tapered neck and proposes the approximate nonlinear impedance model.

  • PDF

Modeling of Geochemical Variations and Weathering Depth on the Surface of Pelitic Rocks in Periodical Submerging Zone: Bangudae Petroglyphs (주기적 침수구역 이질암 표면의 지구화학적 변화와 풍화심도 모델링: 반구대 암각화)

  • Chan Hee Lee;Yu Gun Chun
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.583-596
    • /
    • 2022
  • The rock surface of Bangudae petroglyphs is mainly dark brown hornfelsified shales by contact metamorphism. The surface form a weathered layer of a invariable depth, and there is a difference with mineral and chemical composition between weathered and non-weathered layers. Surface of the petroglyphs has been discolored to light brown over the face due to biological and chemical weathering. As the measuring chromaticity based on the non-weathered layer, the whiteness and yellowness increased in the weathered layer, and the color difference (ΔE) was 5.54 to 36.89 (mean 17.26). In the weathered layer of the petroglyph surface, the CaO content was reduced by about 90% compared to the non-weathered layer, and Sr also showed the same trend. In particular, the mean porosity of the non-weathered layer was 0.4%, but it was estimated as 25.0% in the weathered layer. This is interpreted as the fact that calcite reacts with water, and forms a weathered layer from the surface as it is eluted. Based on the weathering depth modeling of the petroglyphs using the penetration characteristics of X-rays, the weathering depth of rock faces was found to be 1 to 2mm. However, the area classified as 2mm or more estimated to be a maximum of 3 to 4mm, considering the weathering depth around the petroglyphs surface.

Correlation of mineralogical and textural properties with mechanical qualities of granite dimension stone from the Namwon area, Korea (남원지역 화강암 석재의 품질, 암석조직과 구성광물의 비교연구)

  • 홍세선;윤현수;이병태
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.105-121
    • /
    • 2004
  • The purpose of this study is to investigate the relationship between petrographical and engineering properties of granitic rocks, widely used as building and ornamental stones in Korea, at the Namwon are a. This area is one of the most famous area as a domestic dimension stone production. The granitic rocks were examined for grain sizes, modal compositions and then same samples were tested to determine specific gravity, water absorption, porosity, uniaxial compressive strength, tensile strength, abrasive hardness, P-wave velocity, modulus of elasticity and Poisson's ratio. It is suggested that the influence of the grain size on the engineering properties is more important than that of the mode of mineralogical compositions. And quartz contents also significantly influence the engineering properties of granitic rocks.

Analysis on the Rainfall Triggered Slope Failure with a Variation of Soil Layer Thickness: Flume Tests (강우로 인한 조립토 사면에서의 토층 두께 변화에 따른 사면의 활동 분석: 실내 모형실험)

  • SaGong, Myung;Yoo, Jea-Ho;Lee, Sung-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.91-103
    • /
    • 2009
  • Slope failure depends upon the climatic features related to related rainfall, structural geology and geomorphological features as well as the variation of the mechanical behaviors of soil constituting a slope. In this paper, among many variables, effects of soil layer thickness on the slope failure process, and variations of matric suction and volumetric water content were observed. When the soil layer is relatively thick, the descending wetting front decreases matric suction and the observed matric suction reaches to "0" value. When the wetting front reaches to the impermeable boundary, the bottom surface of steel soil box, ascending wetting front was observed. This observation can be postulated to be the effects of various sizes of pores. When macro size pores exist, the capillary effects can be reduced and infilling of pore will be limited. The partially filled pores would be filled with water during the ascending of the wetting front, which bounces from the impermeable boundary. This assumption has been assured from the observation of variation of the volumetric water contents at different depth. When the soil layer is thick (thickness = 20 cm), for granular material, erosion is a cause triggering the slope failure. It has been found that the initiation of erosion occurs when the top soil is fully saturated. Meanwhile, when the soil layer is shallow (thickness = 10 cm), slope slides as en mass. The slope failure for this condition occurs when the wetting front reaches to the interface between the soil layer and steel soil box. As the wetting front approaches to the bottom of soil layer, reduction of shear resistance along the boundary and increase of the unit weight due to the infiltration occur and these produce complex effects on the slope failure processes.

Physical Properties of Surface Sediments of the KR(Korea Reserved) 1, 2, and 5 Areas, Northeastern Equatorial Pacific (북동태평양 대한민국 광구 KR1, 2, 5 지역 표층 퇴적물의 물리적 특성 비교)

  • Lee, Hyun-Bok;Chi, Sang-Bum;Park, Cheong-Kee;Kim, Ki-Hyune;Ju, Se-Jong;Oh, Jae-Kyung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.168-177
    • /
    • 2008
  • Trafficablility of a miner and potential environmental impacts due to mining activities should be considered in the selection of a commercial manganese nodule mining site. These two factors can be evaluated comparatively with physical properties and shear strength of sea-bed sediments. For the qualitative comparison of potential minig sites in terms of these two factors, physical properties such as water contents, void ratios, porosities, and grain densities, and shear strengths of surface sediments were determined for the three potential manganese nodule mining sites(KR1, KR2, and KR5) in the Korean manganese nodule contract area, northeast Pacific. For the study, sediment samples were collected from 107 stations from 2004 to 2006. The physical properties of surface sediments showed more significant differences between northern(KR1, KR2) and southern(KR5) blocks than between northern blocks(KR1 vs. KR2). Water content, void ratio, and porosity of sediments from KR5 were relatively higher than those from KR1 and KR2. Grain density of sediments from KR5 was relatively lower than those from KR1 and KR2. Shear strengths of the top 10cm sediments were higher in KR1 and KR2, whereas those of the deeper part were highest in KR5 block. Generally, sediments of high water contents are less suspendible than those of the low water contents by benthic disturbances, thus less disturbance is expected in the sediments of high water content by mining activities. In terms of trafficability, the shear strength of sediment below 10 cm deep is more important than shallower part because miner will disturb at least top 10 cm interval of the surface sediments. Base on these results, we conclude that KR5 area will be the best site for commercial mining among three investigated sites in this study.