• Title/Summary/Keyword: 공격 분류

Search Result 459, Processing Time 0.026 seconds

Prevalence of Emergency Traumatic Injuries in 100 Wild Boar Hunting Dogs (100마리의 야생 멧돼지 사냥견에서 응급 외상성 질환의 분류)

  • Ko, Jae-Jin;Kim, Se-Hoon;Ji, Joong-Ryong;Shim, Kwan-Seob;Kim, Nam-Soo
    • Journal of Veterinary Clinics
    • /
    • v.27 no.6
    • /
    • pp.718-722
    • /
    • 2010
  • To investigate patterns and severity of hunting-related emergency traumatic injuries in wild boar hunting dogs. One hundred wild boar hunting dogs with emergency traumatic injuries sustained during wild boar hunting as a result of wild boar attack and accidental shooting of ensnarement in a trap. The retrospective study involved 100 dogs brought to CAMC for treatment of emergency traumatic injury sustained during wild boar hunting in Jeon-buk province from August 2007 to April 2008. Medical information obtained from the medical records included signalment; cause of injury; number, location and severity of injuries; and mortality. The 100 patients displayed 136 injuries (single injury in 71 dogs and multiple injuries in 29 dogs). Causes of the emergency traumatic injuries were wild boar attack (n = 92), accidental shooting (n = 7), and entrapment (n = 1). The thoracic area was the most common site of injury. The most common injury severity score (ISS) was code 2. The mortality rate was 9%, and all deaths involved thoracic injury. Emergency traumatic injuries sustained during wild boar hunting are most commonly thoracic injuries caused by prey attack. The nature of the injuries can differ from those typically encountered by small animal veterinarians.

Detection of Signs of Hostile Cyber Activity against External Networks based on Autoencoder (오토인코더 기반의 외부망 적대적 사이버 활동 징후 감지)

  • Park, Hansol;Kim, Kookjin;Jeong, Jaeyeong;Jang, jisu;Youn, Jaepil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.39-48
    • /
    • 2022
  • Cyberattacks around the world continue to increase, and their damage extends beyond government facilities and affects civilians. These issues emphasized the importance of developing a system that can identify and detect cyber anomalies early. As above, in order to effectively identify cyber anomalies, several studies have been conducted to learn BGP (Border Gateway Protocol) data through a machine learning model and identify them as anomalies. However, BGP data is unbalanced data in which abnormal data is less than normal data. This causes the model to have a learning biased result, reducing the reliability of the result. In addition, there is a limit in that security personnel cannot recognize the cyber situation as a typical result of machine learning in an actual cyber situation. Therefore, in this paper, we investigate BGP (Border Gateway Protocol) that keeps network records around the world and solve the problem of unbalanced data by using SMOTE. After that, assuming a cyber range situation, an autoencoder classifies cyber anomalies and visualizes the classified data. By learning the pattern of normal data, the performance of classifying abnormal data with 92.4% accuracy was derived, and the auxiliary index also showed 90% performance, ensuring reliability of the results. In addition, it is expected to be able to effectively defend against cyber attacks because it is possible to effectively recognize the situation by visualizing the congested cyber space.

Detection of Abnormal CAN Messages Using Periodicity and Time Series Analysis (CAN 메시지의 주기성과 시계열 분석을 활용한 비정상 탐지 방법)

  • Se-Rin Kim;Ji-Hyun Sung;Beom-Heon Youn;Harksu Cho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.9
    • /
    • pp.395-403
    • /
    • 2024
  • Recently, with the advancement of technology, the automotive industry has seen an increase in network connectivity. CAN (Controller Area Network) bus technology enables fast and efficient data communication between various electronic devices and systems within a vehicle, providing a platform that integrates and manages a wide range of functions, from core systems to auxiliary features. However, this increased connectivity raises concerns about network security, as external attackers could potentially gain access to the automotive network, taking control of the vehicle or stealing personal information. This paper analyzed abnormal messages occurring in CAN and confirmed that message occurrence periodicity, frequency, and data changes are important factors in the detection of abnormal messages. Through DBC decoding, the specific meanings of CAN messages were interpreted. Based on this, a model for classifying abnormalities was proposed using the GRU model to analyze the periodicity and trend of message occurrences by measuring the difference (residual) between the predicted and actual messages occurring within a certain period as an abnormality metric. Additionally, for multi-class classification of attack techniques on abnormal messages, a Random Forest model was introduced as a multi-classifier using message occurrence frequency, periodicity, and residuals, achieving improved performance. This model achieved a high accuracy of over 99% in detecting abnormal messages and demonstrated superior performance compared to other existing models.

Implementation of Instruction-Level Disassembler Based on Power Consumption Traces Using CNN (CNN을 이용한 소비 전력 파형 기반 명령어 수준 역어셈블러 구현)

  • Bae, Daehyeon;Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.527-536
    • /
    • 2020
  • It has been found that an attacker can extract the secret key embedded in a security device and recover the operation instruction using power consumption traces which are some kind of side channel information. Many profiling-based side channel attacks based on a deep learning model such as MLP(Multi-Layer Perceptron) method are recently researched. In this paper, we implemented a disassembler for operation instruction set used in the micro-controller AVR XMEGA128-D4. After measuring the template traces on each instruction, we automatically made the pre-processing process and classified the operation instruction set using a deep learning model CNN. As an experimental result, we showed that all instructions are classified with 87.5% accuracy and some core instructions used frequently in device operation are with 99.6% respectively.

Application of Machine Learning Techniques for the Classification of Source Code Vulnerability (소스코드 취약성 분류를 위한 기계학습 기법의 적용)

  • Lee, Won-Kyung;Lee, Min-Ju;Seo, DongSu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.735-743
    • /
    • 2020
  • Secure coding is a technique that detects malicious attack or unexpected errors to make software systems resilient against such circumstances. In many cases secure coding relies on static analysis tools to find vulnerable patterns and contaminated data in advance. However, secure coding has the disadvantage of being dependent on rule-sets, and accurate diagnosis is difficult as the complexity of static analysis tools increases. In order to support secure coding, we apply machine learning techniques, such as DNN, CNN and RNN to investigate into finding major weakness patterns shown in secure development coding guides and present machine learning models and experimental results. We believe that machine learning techniques can support detecting security weakness along with static analysis techniques.

An Intrusion Detection System using Time Delay Neural Networks (시간지연 신경망을 이용한 침입탐지 시스템)

  • 강흥식;강병두;정성윤;김상균
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.5
    • /
    • pp.778-787
    • /
    • 2003
  • Intrusion detection systems based on rules are not efficient for mutated attacks, because they need additional rules for the variations. In this paper, we propose an intrusion detection system using the time delay neural network. Packets on the network can be considered as gray images of which pixels represent bytes of them. Using this continuous packet images, we construct a neural network classifier that discriminates between normal and abnormal packet flows. The system deals well with various mutated attacks, as well as well known attacks.

  • PDF

Digital Watermarking using HVS and Neural Network (HVS와 신경회로망을 이용한 디지털 워터마킹)

  • Lee, Young-Hee;Lee, Mun-Hee;Cha, Eui-Young
    • The Journal of Korean Association of Computer Education
    • /
    • v.9 no.2
    • /
    • pp.101-109
    • /
    • 2006
  • We propose an adaptive digital watermarking algorithm using HVS(human visual system) and SOM(Self-Organizing Map) among neural networks. This method adjusts adaptively the strength of the watermark which is embedded in different blocks according to block classification in DCT(Discrete Cosine Transform) domain. All blocks in 3 classes out of 4 are selected to embed a watermark. Watermark sequences are embedded in 6 lowest frequency coefficients of each block except the DC component. The experimental results are excellent.

  • PDF

Automated Classification of Unknown Smart Contracts of Ethereum Using Machine Learning (기계학습을 활용한 이더리움 미확인 스마트 컨트랙트 자동 분류 방안)

  • Lee, Donggun;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.6
    • /
    • pp.1319-1328
    • /
    • 2018
  • A blockchain system developed for crypto-currency has attractive characteristics, such as de-centralization, distributed ledger, and partial anonymity, making itself adopted in various fields. Among those characteristics, partial anonymity strongly assures privacy of users, but side effects such as abuse of crime are also appearing, and so countermeasures for circumventing such abuse have been studied continuously. In this paper, we propose a machine-learning based method for classifying smart contracts in Ethereum regarding their functions and design patterns and for identifying user behaviors according to them.

Threat Analysis based Software Security Testing for preventing the Attacks to Incapacitate Security Features of Information Security Systems (보안기능의 무력화 공격을 예방하기 위한 위협분석 기반 소프트웨어 보안 테스팅)

  • Kim, Dongjin;Jeong, Youn-Sik;Yun, Gwangyeul;Yoo, Haeyoung;Cho, Seong-Je;Kim, Giyoun;Lee, Jinyoung;Kim, Hong-Geun;Lee, Taeseung;Lim, Jae-Myung;Won, Dongho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.5
    • /
    • pp.1191-1204
    • /
    • 2012
  • As attackers try to paralyze information security systems, many researchers have investigated security testing to analyze vulnerabilities of information security products. Penetration testing, a critical step in the development of any secure product, is the practice of testing a computer systems to find vulnerabilities that an attacker could exploit. Security testing like penetration testing includes gathering information about the target before the test, identifying possible entry points, attempting to break in and reporting back the findings. Therefore, to obtain maximum generality, re-usability and efficiency is very useful for efficient security testing and vulnerability hunting activities. In this paper, we propose a threat analysis based software security testing technique for evaluating that the security functionality of target products provides the properties of self-protection and non-bypassability in order to respond to attacks to incapacitate or bypass the security features of the target products. We conduct a security threat analysis to identify vulnerabilities and establish a testing strategy according to software modules and security features/functions of the target products after threat analysis to improve re-usability and efficiency of software security testing. The proposed technique consists of threat analysis and classification, selection of right strategy for security testing, and security testing. We demonstrate our technique can systematically evaluate the strength of security systems by analyzing case studies and performing security tests.

Sleep Deprivation Attack Detection Based on Clustering in Wireless Sensor Network (무선 센서 네트워크에서 클러스터링 기반 Sleep Deprivation Attack 탐지 모델)

  • Kim, Suk-young;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.1
    • /
    • pp.83-97
    • /
    • 2021
  • Wireless sensors that make up the Wireless Sensor Network generally have extremely limited power and resources. The wireless sensor enters the sleep state at a certain interval to conserve power. The Sleep deflation attack is a deadly attack that consumes power by preventing wireless sensors from entering the sleep state, but there is no clear countermeasure. Thus, in this paper, using clustering-based binary search tree structure, the Sleep deprivation attack detection model is proposed. The model proposed in this paper utilizes one of the characteristics of both attack sensor nodes and normal sensor nodes which were classified using machine learning. The characteristics used for detection were determined using Long Short-Term Memory, Decision Tree, Support Vector Machine, and K-Nearest Neighbor. Thresholds for judging attack sensor nodes were then learned by applying the SVM. The determined features were used in the proposed algorithm to calculate the values for attack detection, and the threshold for determining the calculated values was derived by applying SVM.Through experiments, the detection model proposed showed a detection rate of 94% when 35% of the total sensor nodes were attack sensor nodes and improvement of up to 26% in power retention.