• Title/Summary/Keyword: 공간-주파수 부호화

Search Result 62, Processing Time 0.021 seconds

An efficient Channel Estimation Technique for Space-Time Coded OFDM Systems (시.공간 부호화된 OFDM 시스템의 효율적인 채널추정기법)

  • Jeon, Won-Gi;Baek, Gyeong-Hyeon;Jo, Yong-Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1499-1509
    • /
    • 2000
  • In this paper, we propose an efficient channel estimation technique for space-time coded orthogonal frequency-division multiplexing (OFDM) systems with transmitter and receiver diversity. The proposed technique estimates uniquely all channel frequency responses needed in a decoder of space-time coded OFDM systems using "comb-type" raining symbols. The computational complexity of the proposed technique is reduced dramatically, compared with the previous minimum mean-squared error (MMSE) technique, due to the processing is made all in the frequency-domain. Also, several other techniques for mitigating random noise effect and tracking channel variation are discussed to further improve the performance of the proposed approach. The performances of the proposed approach are demonstrated by computer simulation for mobile wireless channels. channels.

  • PDF

Wavelet based video coding with spatial band coding (대역별 공간 부호화를 이용한 웨이블릿 기반 동영상 부호화)

  • Park, Min-Seon;Park, Sang-Ju
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.351-358
    • /
    • 2002
  • Video compression based on DCT (Discrete Cosine Transform) has weakpoints of blocking artifacts and pixel loss when the resolution is changed. DWT (Discrete Wavelet Transform) based method can overcome such problems. In SAMCoW (Scalable Adaptive Motion Compensation Wavelet), one of wavelet based video coding algorithm, both intra frames and motion compensated error frames are encoded using EZW(Embedded Zerotree Wavelet) algorithm. However the property of wavelets transform coefficients of motion compensated error frames are different from that of still images. Signal energy is not highly concentrated in the lower bands which is true for most still image cases. Signal energy is rather evenly distributed over all frequency bands. This paper suggests a new video coding algorithm utilizing these properties. Spatial band coding which is known to be very effective for encoding images with relative1y high frequency components and not utilizing the interband coefficients correlation is applied instead of EZW to encode both intra and inter frames. In spatial band coding, the position and value of significant wavelet coefficients in each band are progressively transmitted. Unlike EZW, inter band coefficients correlations are not utilized in spatial band coding. It has been shown that spatial band coding gives better performance than EZW when applied to wavelet based video compression.

Design and Performance of Low Complexity Multiple Antenna Relay Transmission Based on STBC-OFDM (시공간 부호화 직교 주파수분할 다중화 기반 저 복잡도 다중 안테나 릴레이 전송 방식 설계 및 성능)

  • Lee, Ji-Hye;Park, Jae-Cheol;Wang, Jin-Soo;Lee, Seong-Ro;Kim, Yun-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11C
    • /
    • pp.673-681
    • /
    • 2011
  • In this paper, we design multiple antenna relay transmission schemes of low complexity to enhance the spatial diversity in orthogonal frequency division multiplexing (OFDM) systems. The relay scheme underlined, can provide space time block coding (STBC) of OFDM signals in the time domain without IFFT and FFT operations with much reduced complexity. In this paper, we modify the conventional low-complexity STBC-OFDM relaying scheme to be compatible to the existing OFDM systems. In addition, we extend the proposed scheme for multiple antenna relays and provide performance enhancement strategies according to the channel quality information available at the relay. The proposed scheme is shown to improve the diversity and thereby to reduce the outage probability and coded bit error rate. Therefore, the proposed scheme will be promising for service quality improvement or coverage extension based on OFDM like wireless LANs and maritime communications.

Iterative Decoding for LDPC Coded MIMO-OFDM Systems with SFBC Encoding (주파수공간블록부호화를 적용한 MIMO-OFDM 시스템을 위한 반복복호 기법)

  • Sohn Insoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5A
    • /
    • pp.402-406
    • /
    • 2005
  • A multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system using low-density parity-check (LDPC) code and iterative decoding is presented. The iterative decoding is performed by combining the zero-forcing technique and LDPC decoding through the use of the 'turbo principle.' The proposed system is shown to be effective with high order modulation and outperforms the space frequency block code (SFBC) method with iterative decoding.

Space-Frequency Block Coded Relay Transmission System for a Shadow Area (음영 지역을 위한 주파수 공간 블록 부호화 중계기 전송 시스템)

  • Won, Hui-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5776-5782
    • /
    • 2014
  • Relay-assisted wireless communication systems have been studied widely to cope with shadow areas and extend the cell coverage. This paper proposes a space-frequency (SF) block coded single carrier-frequency division multiple access (SC-FDMA) transmission system in a relaying multi-path shadow area and present the performance comparison of SC-FDMA systems based on the signal-to-noise power ratio (SNR) between a relay and a destination station. The performance of relaying SC-FDMA systems can be improved by applying SF block code to the recovered signals of relays before re-transmitting them. The simulation result showed that the SNR performance of the proposed SF block coded relaying SC-FDMA system was approximately 5 dB better than the SNR performance of the single-path relaying SC-FDMA system at a symbol error rate (SER) of $10^{-2}$.

Suboptimum detection of space-time trellis coded OFDM over slowly fading channel (느린 페이딩 채널에서 공간-시간 트렐리스 부호화된 OFDM의 준최적 검파)

  • Kim, Young-Ju;Li, Xun;Park, Noe-Yoon;Lee, In-Sung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.12
    • /
    • pp.28-33
    • /
    • 2007
  • We present a space-time trellis coded OFDM system in flow fading channels. Generalized principal ratio combining (GPRC) is also analyzed theoretically in frequency domain. The analysis show that the decoding metric of GPRC include the metrics of maximum likelihood (ML) and PRC. The computer simulations with M-PSK modulation are obtained in frequency flat and frequency selective lading channels. The decoding complexity and simulation running times are also evaluated among the decoding schemes.

A Study of BWE-Prediction-Based Split-Band Coding Scheme (BWE 예측기반 대역분할 부호화기에 대한 연구)

  • Song, Geun-Bae;Kim, Austin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.309-318
    • /
    • 2008
  • In this paper, we discuss a method for efficiently coding the high-band signal in the split-band coding approach where an input signal is divided into two bands and then each band may be encoded separately. Generally, and especially through the research on the artificial bandwidth extension (BWE), it is well known that there is a correlation between the two bands to some degree. Therefore, some coding gain could be achieved by utilizing the correlation. In the BWE-prediction-based coding approach, using a simple linear BWE function may not yield optimal results because the correlation has a non-linear characteristic. In this paper, we investigate the new coding scheme more in details. A few representative BWE functions including linear and non-linear ones are investigated and compared to find a suitable one for the coding purpose. In addition, it is also discussed whether there are some additional gains in combining the BWE coder with the predictive vector quantizer which exploits the temporal correlation.

High Data Rate Ultra Wideband Space Time Coded OFDM (고속 전송률 UWB 시공간 부호화 OFDM)

  • Lee Kwang-Jae;Chen Hsiao-Hwa;Lee Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.7 s.349
    • /
    • pp.132-142
    • /
    • 2006
  • In this paper, we present a candidate high data rate space time coded OFDM system for short range personal networking. The system transmits the complex space time coded signals with a hybrid orthogonal frequency division multiplexing (OFDM) based on ultra wideband (UWB) pulses. The transmitted signals are sparse pulse trains modulated by a frequency selected from a properly designed set of frequencies. Additionally, a widely linear (WL) receive filter and a space time frequency transmission are designed by using two simple parallel linear detectors. To overcome the deeply fade in the propagation system, a beamforming combined with space time block codes also 따 e briefly discussed.

Progressive Image Transmissionbased on Wavelet Transform (웨이브렛 변환에 기반을 둔 점진적 영상전송에 관한 연구)

  • Yun, Kug-Jin;You, Kang-Su;Park, Jeong-Ho;Kwak, Hoon-Sung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10a
    • /
    • pp.175-178
    • /
    • 2000
  • 본 논문에서는 공간영역에서 수행한 영상의 영역분류와 웨이브렛 변환대역 사이의 상관 관계를 이용한 새로운 점진적 영상 부호화 전송기법을 제안한다. 제안한 방법은 원 영상을 $2^n{\times}2^n$ 블록으로 분할 한 뒤 각 블록의 표준편차에 따라 저주파수 영역, 중간주파수 영역, 고주파수 영역으로 분류하고 각 영역의 특성에 따른 부호화 방식을 적용하여 부호화 효율을 증가시켰다. 실험의 결과 제안한 부호화 전송기법은 EZW 방식에 비해 복원화질 및 전송 비트율에서 좋은 결과를 나타내었으며, 사용자의 요구조건과 응용분야에 따라 점진적 전송이 가능함을 확인하였다.

  • PDF

Video Watermarking Method Using Global Masking (전역 마스킹을 이용한 비디오 워터마킹 방법)

  • 문지영;호요성;이승욱
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.163-168
    • /
    • 2002
  • 본 논문에서는 워터마크의 기본적인 요구사항인 비가시성(invisibility)을 유지하면서 강인함(robustness)을 최대로 하기 위해 워터마크를 삽입할 때 인간시각 특성(Human Visual System, HVS)을 이용한다. 특히, 주파수 마스킹(frequency masking), 공간 마스킹(spatial masking), 그리고 움직임 마스킹(motion masking)을 결합한 전역마스킹(global masking) 기법을 제안한다. 주파수 마스킹은 프레임을 DCT 변환한 후 주파수 민감도 표(frequency sensitivity table)를 이용해 위치 정보를 구한다. 공간 마스킹은 밝기(luminance) 및 윤곽선(edge) 정보를 이용해서 구하며. 움직임 마스킹은 이웃하는 프레임간의 움직임 변화를 이용하여 프레임간의 상관성을 고려한다. 본 논문에서는 키(key) 값에 의해 발생된 랜덤시퀀스와 로고의 배타적 논리합(exclusive OR)에 의해 결합된 워터마크를 전역 마스킹 결과에 따라 압축되지 않은 비디오 프레임에 직접 적용했으며, 실험을 통해 MPEG 부호화 및 재부호화 공격에 대해서 제안한 방법이 강인함을 확인했다.

  • PDF