• Title/Summary/Keyword: 공간 패턴

Search Result 1,840, Processing Time 0.026 seconds

Stability evaluation of room-and-pillar underground method by 3D numerical analysis model (3차원 수치해석모델을 이용한 주방식 지하공간의 안정성 평가)

  • Byung-Yun, Kang;Sanghyuk, Bang;Choong-Ky, Roh;Dongkwan, Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • In this study, the stability of the room-and-pillar underground method was investigated using numerical analysis method. In-situ geotechnical investigation was conducted, and a supporting pattern was selected based on the geotechnical investigation data. For the supporting pattern, Type-1, 2, 3 were selected for each ground condition. A 3D numerical analysis model was developed for effective simulation as the room-and-pillar underground method consist of a pillar and room. As a review of numerical analysis, it was confirmed that the crown settlement, convergence, shotcrete and rock bolt were all stable in all supporting patterns. As a result of the analysis by the construction stage, it was confirmed that excessive stress was generated in the room when the construction stage of forming pillar. So, precise construction is required during the actual construction stage of the pillar formation.

Handwritten Numeral Recognition Using Karhunen-Loeve Transform Based Subspace Classifier and Combined Multiple Novelty Classifiers (Karhunen-Loeve 변환 기반의 부분공간 인식기와 결합된 다중 노벨티 인식기를 이용한 필기체 숫자 인식)

  • 임길택;진성일
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.6
    • /
    • pp.88-98
    • /
    • 1998
  • Subspace classifier is a popular pattern recognition method based on Karhunen-Loeve transform. This classifier describes a high dimensional pattern by using a reduced dimensional subspace. Because of the loss of information induced by dimensionality reduction, however, a subspace classifier sometimes shows unsatisfactory recognition performance to the patterns having quite similar principal components each other. In this paper, we propose the use of multiple novelty neural network classifiers constructed on novelty vectors to adopt minor components usually ignored and present a method of improving recognition performance through combining those with the subspace classifier. We develop the proposed classifier on handwritten numeral database and analyze its properties. Our proposed classifier shows better recognition performance compared with other classifiers, though it requires more weight links.

  • PDF

Optimization of Thinned Sensor Arrays Using A Weighted Leastd Square Method (계수 최소 자승 방법을 사용한 희소어레이의 최적화)

  • 장병건;전창대
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.117-120
    • /
    • 1999
  • 본 논문은 희소어레이의 패턴을 원하는 패턴과 실제 희소어레이의 패턴간의 오차의 계수적 자승치를 최소화하여 최적화하는 방법을 제시한다 센서의 간격이 어레이 중심에 관하여 대칭인 경우와 비대칭인 경우에 대하여 성능을 점검하며, 어레이 공간의 주어진 영역의 오차함수에 성능 향상을 위하여 계수를 적용한다. 주빔 부근의 측면롭의 효과적인 제어를 위하여 지수 함수적인 계수를 제안하였으며 그 결과 측면롭의 수준이 전체적으로 균등하게 분포되는 패턴을 얻을 수 있었다. 이 결과는 입력잡음신호가 어레이 공간상에 균등하게 입사될 때 효과적으로 사용될 수 있다.

  • PDF

Precision Analysis of the STOMP(FW) Algorithm According to the Spatial Conceptual Hierarchy (공간 개념 계층에 따른 STOMP(FW) 알고리즘의 정확도 분석)

  • Lee, Yon-Sik;Kim, Young-Ja;Park, Sung-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5015-5022
    • /
    • 2010
  • Most of the existing pattern mining techniques are capable of searching patterns according to the continuous change of the spatial information of an object but there is no constraint on the spatial information that must be included in the extracted pattern. Thus, the existing techniques are not applicable to the optimal path search between specific nodes or path prediction considering the nodes that a moving object is required to round during a unit time. In this paper, the precision of the path search according to the spatial hierarchy is analyzed using the Spatial-Temporal Optimal Moving Pattern(with Frequency & Weight) (STOPM(FW)) algorithm which searches for the optimal moving path by considering the most frequent pattern and other weighted factors such as time and cost. The result of analysis shows that the database retrieval time is minimized through the reduction of retrieval range applying with the spatial constraints. Also, the optimal moving pattern is efficiently obtained by considering whether the moving pattern is included in each hierarchical spatial scope of the spatial hierarchy or not.

Temporal Pattern Mining of Moving Objects for Location based Services (위치 기반 서비스를 위한 이동 객체의 시간 패턴 탐사 기법)

  • Lee, Jun-Uk;Baek, Ok-Hyeon;Ryu, Geun-Ho
    • Journal of KIISE:Databases
    • /
    • v.29 no.5
    • /
    • pp.335-346
    • /
    • 2002
  • LBS(Location Based Services) provide the location-based information to its mobile users. The primary functionality of these services is to provide useful information to its users at a minimum cost of resources. The functionality can be implemented through data mining techniques. However, conventional data mining researches have not been considered spatial and temporal aspects of data simultaneously. Therefore, these techniques are inappropriate to apply on the objects of LBS, which change spatial attributes over time. In this paper, we propose a new data mining technique for identifying the temporal patterns from the series of the locations of moving objects that have both temporal and spatial dimension. We use a spatial operation of contains to generalize the location of moving point and apply time constraints between the locations of a moving object to make a valid moving sequence. Finally, the spatio-temporal technique proposed in this paper is very practical approach in not only providing more useful knowledge to LBS, but also improving the quality of the services.

The Efficient Spatio-Temporal Moving Pattern Mining using Moving Sequence Tree (이동 시퀀스 트리를 이용한 효율적인 시공간 이동 패턴 탐사 기법)

  • Lee, Yon-Sik;Ko, Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.2
    • /
    • pp.237-248
    • /
    • 2009
  • Recently, based on dynamic location or mobility of moving object, many researches on pattern mining methods actively progress to extract more available patterns from various moving patterns for development of location based services. The performance of moving pattern mining depend on how analyze and process the huge set of spatio-temporal data. Some of traditional spatio-temporal pattern mining methods[1-6,8-11]have proposed to solve these problem, but they did not solve properly to reduce mining execution time and minimize required memory space. Therefore, in this paper, we propose new spatio-temporal pattern mining method which extract the sequential and periodic frequent moving patterns efficiently from the huge set of spatio-temporal moving data. The proposed method reduces mining execution time of $83%{\sim}93%$ rate on frequent moving patterns mining using the moving sequence tree which generated from historical data of moving objects based on hash tree. And also, for minimizing the required memory space, it generalize the detained historical data including spatio-temporal attributes into the real world scope of space and time using spatio-temporal concept hierarchy.

Spatiotemporal Moving Pattern Discovery using Location Generalization of Moving Objects (이동객체 위치 일반화를 이용한 시공간 이동 패턴 탐사)

  • Lee, Jun-Wook;Nam, Kwang-Woo
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1103-1114
    • /
    • 2003
  • Currently, one of the most critical issues in developing the service support system for various spatio-temporal applications is the discoverying of meaningful knowledge from the large volume of moving object data. This sort of knowledge refers to the spatiotemporal moving pattern. To discovery such knowledge, various relationships between moving objects such as temporal, spatial and spatiotemporal topological relationships needs to be considered in knowledge discovery. In this paper, we proposed an efficient method, MPMine, for discoverying spatiotemporal moving patterns. The method not only has considered both temporal constraint and spatial constrain but also performs the spatial generalization using a spatial topological operation, contain(). Different from the previous temporal pattern methods, the proposed method is able to save the search space by using the location summarization and generalization of the moving object data. Therefore, Efficient discoverying of the useful moving patterns is possible.

A Spatio-Temporal Variation Pattern of Oiling Status Using Spatial Analysis in Mallipo Beach of Korea (공간분석 기법을 이용한 만리포 유분의 시·공간 변동 패턴 분석)

  • Kim, Tae-Hoon;Choi, Hyun-Woo;Kim, Moon-Koo;Shim, Won-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.90-103
    • /
    • 2012
  • Mallipo is a representative beach contaminated by Hebei Spirit oil spill accident in December 2007. This study aims to compare the differences of two seasons (winter and summer) for the spatio-temporal variation patterns of oiling status in the whole area and divided five regions of Mallipo beach. In the whole area, the decreasing rate of average TPH (total petroleum hydrocarbon) in winter was twice greater than summer during four years. According to the spatial variation pattern analysis of oiling status using weighted mean center and weighted standard distance, the oil concentration was clustered on southwestern region in winter, however, the TPH was dispersed in the whole area in summer. Temporal variation pattern of TPH in each of Mallipo's five regions showed that TPH had been consistently decreased in winter, but oil concentration had not been changed in summer since 2009 except the southwestern region. Therefore, in order to evaluate and predict the progress of oiling status, it is needed to analyze the spatio-temporal variation pattern of TPH using spatial analysis after separating data into seasons (e.g., winter and summer). In addition, time series analysis is useful in the regional scales through spatial partitioning rather than the whole beach area for the understanding of temporal variation pattern.

A Method for Optimal Moving Pattern Mining using Frequency of Moving Sequence (이동 시퀀스의 빈발도를 이용한 최적 이동 패턴 탐사 기법)

  • Lee, Yon-Sik;Ko, Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.113-122
    • /
    • 2009
  • Since the traditional pattern mining methods only probe unspecified moving patterns that seem to satisfy users' requests among diverse patterns within the limited scopes of time and space, they are not applicable to problems involving the mining of optimal moving patterns, which contain complex time and space constraints, such as 1) searching the optimal path between two specific points, and 2) scheduling a path within the specified time. Therefore, in this paper, we illustrate some problems on mining the optimal moving patterns with complex time and space constraints from a vast set of historical data of numerous moving objects, and suggest a new moving pattern mining method that can be used to search patterns of an optimal moving path as a location-based service. The proposed method, which determines the optimal path(most frequently used path) using pattern frequency retrieved from historical data of moving objects between two specific points, can efficiently carry out pattern mining tasks using by space generalization at the minimum level on the moving object's location attribute in consideration of topological relationship between the object's location and spatial scope. Testing the efficiency of this algorithm was done by comparing the operation processing time with Dijkstra algorithm and $A^*$ algorithm which are generally used for searching the optimal path. As a result, although there were some differences according to heuristic weight on $A^*$ algorithm, it showed that the proposed method is more efficient than the other methods mentioned.

Customized Speech Synthesis for Children with Characteristic Behavioral Patterns (어린이 행동 패턴에 기반한 개별화된 음성 합성)

  • Lee, Ho-Joon;Park, Jong-C.
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.571-578
    • /
    • 2006
  • 음성을 통한 사용자 간의 정보 교환 방법은 추가적인 훈련 과정이나 장비가 필요하지 않고 공간 제약이 거의 없기 때문에 노약자 등 사용자의 연령대에 관계없이 사용될 수 있다. 또한 음성 정보는 시각이나 촉각 등 다른 정보 수단과의 상호 작용으로 상승 효과를 유발할 수 있기 때문에 사람과 기계 사이의 인터페이스로 활용될 경우 정보 전달력을 높이면서 사용자 친화적인 서비스를 제공할 수 있다. 그러나 동일한 상황에서 동일한 유형의 음성 정보가 사용자에게 지속적으로 제공될 경우 표현상의 단조로움으로 인해 정보 전달력이 급감할 수 있는 문제점도 지니고 있다. 따라서 음성을 통한 정보 전달의 경우 동일 상황이라 하더라도 사용자의 행동 패턴, 심리 상태, 주변 환경 등에 따라 차별화된 문장 구조 및 어휘의 선택으로 긴장감을 유지시켜 줄 수 있어야 한다. 본 논문에서는 5 세 전후의 어린이를 대상으로 그들의 행동 패턴 분석에 기반하여 개별화된 음성 합성 결과를 제공하는 시스템을 제안한다. 이를 위해 유치원이라는 물리적 공간에서 어린이들의 주된 행동 패턴을 분석하고, 현직 유치원 교사를 대상으로 동일한 정보를 전달하는 조건을 통하여 어린이의 행동 패턴과 위치 정보, 연령 및 성격에 따른 발화 문장의 문장 구조와 어휘적 특성을 파악한다. 최종적으로, 개별화된 음성 합성 결과를 위해 유치원 공간을 시뮬레이션 하고 RFID 를 이용하여 어린이의 행동 패턴 및 위치 정보를 파악한다. 그리고 각 상황에 따라 분석된 발화문의 문장 구조와 어휘 특성을 반영하여 음성으로 합성될 문장의 문장 구조 및 어휘를 재구성하여 사용자 개별화된 음성 합성 결과를 생성한다. 이러한 결과를 통해 어린이의 행동 패턴이 발화문의 문장 구조 및 어휘에 미치는 영향에 대해서 살펴보고 재구성된 결과 발화문을 평가한다.

  • PDF