• Title/Summary/Keyword: 공간 자기회귀 모형

Search Result 60, Processing Time 0.028 seconds

Detection and Forecast of Climate Change Signal over the Korean Peninsula (한반도 기후변화시그널 탐지 및 예측)

  • Sohn, Keon-Tae;Lee, Eun-Hye;Lee, Jeong-Hyeong
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.4
    • /
    • pp.705-716
    • /
    • 2008
  • The objectives of this study are the detection and forecast of climate change signal in the annual mean of surface temperature data, which are generated by MRI/JMA CGCM over the Korean Peninsula. MRI/JMA CGCM outputs consist of control run data(experiment with no change of $CO_2$ concentration) and scenario run data($CO_2$ 1%/year increase experiment to quadrupling) during 142 years for surface temperature and precipitation. And ECMWF reanalysis data during 43 years are used as observations. All data have the same spatial structure which consists of 42 grid points. Two statistical models, the Bayesian fingerprint method and the regression model with autoregressive error(AUTOREG model), are separately applied to detect the climate change signal. The forecasts up to 2100 are generated by the estimated AUTOREG model only for detected grid points.

Comparison of Spatial Small Area Estimators Based on Neighborhood Information Systems (이웃정보시스템을 이용한 공간 소지역 추정량 비교)

  • Kim, Jeong-Suk;Hwang, Hee-Jin;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.5
    • /
    • pp.855-866
    • /
    • 2008
  • Recently many small area estimation methods using the lattice data analysis have been studied and known that they have good performances. In the case of using the lattice data which is mainly used for small area estimation, the choice of better neighborhood information system is very important for the efficiency of the data analysis. Recently Lee and Shin (2008) compared and analyzed some neighborhood information systems based on GIS methods. In this paper, we evaluate the effect of various neighborhood information systems which were suggested by Lee and Shin (2008). For comparison of the estimators, MSE, Coverage, Calibration, Regression methods are used. The number of unemployment in Economic Active Population Survey(2001) is used for the comparison.

A Study on Identification of the Heat Vulnerability Area Considering Spatial Autocorrelation - Case Study in Daegu (공간적 자기상관성을 고려한 폭염취약지역 도출에 관한 연구 - 대구광역시를 중심으로)

  • Seong, Ji Hoon;Lee, Ki Rim;Kwon, Yong Seok;Han, You Kyung;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.295-304
    • /
    • 2020
  • The IPCC (Intergovernmental Panel on Climate Change) recommended the importance of preventive measures against extreme weather, and heat waves are one of the main themes for establishing preventive measures. In this study, we tried to analyze the heat vulnerable areas by considering not only spatial characteristics but also social characteristics. Energy consumption, popu lation density, normalized difference vegetation index, waterfront distance, solar radiation, and road distribution were examined as variables. Then, by selecting a suitable model, SLM (Spatial Lag Model), available variables were extracted. Then, based on the Fuzzy theory, the degree of vulnerability to heat waves was analyzed for each variable, and six variables were superimposed to finally derive the heat vulnerable area. The study site was selected as the Daegu area where the effects of the heat wave were high. In the case of vulnerable areas, it was confirmed that the existing urban areas are mainly distributed in Seogu, Namgu, and Dalseogu of Daegu, which are less affected by waterside and vegetation. It was confirmed that both spatial and social characteristics should be considered in policy support for reducing heat waves in Daegu.

A Study on the Distribution of Startups and Influencing Factors by Generation in Seoul: Focusing on the Comparison of Young and Middle-aged (서울시 세대별 창업 분포와 영향 요인에 대한 연구: 청년층과 중년층의 비교를 중심으로)

  • Hong, Sungpyo;Lim, Hanryeo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.3
    • /
    • pp.13-29
    • /
    • 2021
  • The purpose of this study was to analyze the spatial distribution and location factors of startups by generation (young and middle-aged) in Seoul. To this end, a research model was established that included factors of industry, population, and startup institutions by generation in 424 administrative districts using the Seoul Business Enterprise Survey(2018), which includes data on the age group of entrepreneurs. As an analysis method, descriptive statistics were conducted to confirm the frequency, average and standard deviation of startups by generation and major variables in the administrative districts of Seoul, and spatial distribution and characteristics of startups by generation were analyzed through global and local spatial autocorrelation analysis. In particular, the spatial distribution of startups in Seoul was confirmed in-depth by categorizing and analyzing startups by major industries. Afterwards, an appropriate spatial regression analysis model was selected through the Lagrange test, and based on this, the location factors affecting startups by generation were analyzed. The main results derived from the research results are as follows. First, there was a significant difference in the spatial distribution of young and middle-aged startups. The young people started to startups in the belt-shaped area that connects Seocho·Gangnam-Yongsan-Mapo-Gangseo, while middle-aged people were relatively active in the southeastern region represented by Seocho, Gangnam, Songpa, and Gangdong. Second, startups by generation in Seoul showed various spatial distributions according to the type of business. In the knowledge high-tech industries(ICT, professional services) in common, Seocho, Gangnam, Mapo, Guro, and Geumcheon were the centers, and the manufacturing industry was focused on existing clusters. On the other hand, in the case of the life service industry, young people were active in startups near universities and cultural centers, while middle-aged people were concentrated on new towns. Third, there was a difference in factors that influenced the startup location of each generation in Seoul. For young people, high-tech industries, universities, cultural capital, and densely populated areas were significant factors for startup, and for middle-aged people, professional service areas, low average age, and the level of concentration of start-up support institutions had a significant influence on startup. Also, these location factors had different influences for each industry. The implications suggested through the study are as follows. First, it is necessary to support systematic startups considering the characteristics of each region, industry, and generation in Seoul. As there are significant differences in startup regions and industries by generation, it is necessary to strengthen a customized startup support system that takes into account these regional and industrial characteristics. Second, in terms of research methods, a follow-up study is needed that comprehensively considers culture and finance at the large districts(Gu) level through data accumulation.

Exploring NDVI Gradient Varying Across Landform and Solar Intensity using GWR: a Case Study of Mt. Geumgang in North Korea (GWR을 활용한 NDVI와 지형·태양광도의 상관성 평가 : 금강산 지역을 사례로)

  • Kim, Jun Woo;Um, Jung Sup
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.73-81
    • /
    • 2013
  • Ordinary least squares (OLS) regression is the primary statistical method in previous studies for vegetation distribution patterns in relation to landform. However, this global regression lacks the ability to uncover some local-specific relationships and spatial autocorrelation in model residuals. This study employed geographically weighted regression (GWR) to examine the spatially varying relationships between NDVI (Normalized Difference Vegetation Index) patterns and changing trends of landform (elevation, slope) and solar intensity (insolation and duration of sunshine) in Mt Geum-gang of North-Korea. Results denoted that GWR was more powerful than OLS in interpreting relationships between NDVI patterns and landform/solar intensity, since GWR was characterized by higher adjusted R2, and reduced spatial autocorrelations in model residuals. Unlike OLS regression, GWR allowed the coefficients of explanatory variables to differ by locality by giving relatively more weight to NDVI patterns which are affected by local landform and solar factors. The strength of the regression relationships in the GWR increased significantly, by showing regression coefficient of higher than 70% (0.744) in the southern ridge of the experimental area. It is anticipated that this research output will serve to increase the scientific and objective vegetation monitoring in relation to landform and solar intensity by overcoming serious constraints suffered from the past non-GWR-based approach.

A Fast Bayesian Detection of Change Points Long-Memory Processes (장기억 과정에서 빠른 베이지안 변화점검출)

  • Kim, Joo-Won;Cho, Sin-Sup;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.735-744
    • /
    • 2009
  • In this paper, we introduce a fast approach for Bayesian detection of change points in long-memory processes. Since a heavy computation is needed to evaluate the likelihood function of long-memory processes, a method for simplifying the computational process is required to efficiently implement a Bayesian inference. Instead of estimating the parameter, we consider selecting a element from the set of possible parameters obtained by categorizing the parameter space. This approach simplifies the detection algorithm and reduces the computational time to detect change points. Since the parameter space is (0, 0.5), there is no big difference between the result of parameter estimation and selection under a proper fractionation of the parameter space. The analysis of Nile river data showed the validation of the proposed method.

Analysis of Neighborhood Environmental Factors Affecting Bicycle Accidents and Accidental Severity in Seoul, Korea (서울시 자전거 교통사고와 사고 심각도에 영향을 미치는 근린환경 요인 분석)

  • Hwang, Sun-Geun;Lee, Sugie
    • Journal of Korea Planning Association
    • /
    • v.53 no.7
    • /
    • pp.49-66
    • /
    • 2018
  • The purpose of this study is to analyze neighborhood environmental factors affecting bicycle accidents and accidental severity in Seoul, Korea. The use of bicycles has increased rapidly as daily transportation means in recent years. As a result, bicycle accidents are also steadily increasing. Using Traffic Accident Analysis System (TAAS) data from 2015 to 2017, this study uses negative binomial regression analysis to identify neighborhood environmental factors affecting bicycle accidents and accidential severity. The main results are as follows. First, bicycle accidents are more likely to occur in commercial and mixed land use areas where pedestrians, bicycle and vehicles are moving together. Second, bicycle accidents are positively associated with road structures such as four-way intersection. In contrast, three-way intersection is negatively associated with serious bicycle accidents. The density of speed hump or street tree is negatively associated with bicycle accidents and accidential severity. This finding indicates the effect of speed limit or street trees on bicycle safety. Fourth, bicycle infrastructures are also important factors affecting bicycle accidents and accidential severity. Bicycle-exclusive roads or bicycle-pedestrian mixed roads are positively associated with bicycle accidents and accidential severity. Finally, this study suggests policy implications to improve bicycle safety.

A Study on the Effect of Macroeconomic Variables on Apartment Rental Housing Prices by Region and the Establishment of Prediction Model (거시경제변수가 지역 별 아파트 전세가격에 미치는 영향 및 예측모델 구축에 관한 연구)

  • Kim, Eun-Mi
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.211-231
    • /
    • 2022
  • This study attempted to identify the effects of macroeconomic variables such as the All Industry Production Index, Consumer Price Index, CD Interest Rate, and KOSPI on apartment lease prices divided into nationwide, Seoul, metropolitan, and region, and to present a methodological prediction model of apartment lease prices by region using Long Short Term Memory (LSTM). According to VAR analysis results, the nationwide apartment lease price index and consumer price index in Lag1 and 2 had a significant effect on the nationwide apartment lease price, and likewise, the Seoul apartment lease price index, the consumer price index, and the CD interest rate in Lag1 and 2 affect the apartment lease price in Seoul. In addition, it was confirmed that the wide-area apartment jeonse price index and the consumer price index had a significant effect on Lag1, and the local apartment jeonse price index and the consumer price index had a significant effect on Lag1. As a result of the establishment of the LSTM prediction model, the predictive power was the highest with RMSE 0.008, MAE 0.006, and R-Suared values of 0.999 for the local apartment lease price prediction model. In the future, it is expected that more meaningful results can be obtained by applying an advanced model based on deep learning, including major policy variables

Feedback Flow Control Using Artificial Neural Network for Pressure Drag Reduction on the NACA0015 Airfoil (NACA0015 익형의 압력항력 감소를 위한 인공신경망 기반의 피드백 유동 제어)

  • Baek, Ji-Hye;Park, Soo-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.729-738
    • /
    • 2021
  • Feedback flow control using an artificial neural network was numerically investigated for NACA0015 Airfoil to suppress flow separation on an airfoil. In order to achieve goal of flow control which is aimed to reduce the size of separation on the airfoil, Blowing&Suction actuator was implemented near the separation point. In the system modeling step, the proper orthogonal decomposition was applied to the pressure field. Then, some POD modes that are necessary for flow control are extracted to analyze the unsteady characteristics. NARX neural network based on decomposed modes are trained to represent the flow dynamics and finally operated in the feedback control loop. Predicted control signal was numerically applied on CFD simulation so that control effect was analyzed through comparing the characteristic of aerodynamic force and spatial modes depending on the presence of the control. The feedback control showed effectiveness in pressure drag reduction up to 29%. Numerical results confirm that the effect is due to dramatic pressure recovery around the trailing edge of the airfoil.

A Portmanteau Test Based on the Discrete Cosine Transform (이산코사인변환을 기반으로 한 포트맨토 검정)

  • Oh, Sung-Un;Cho, Hye-Min;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.323-332
    • /
    • 2007
  • We present a new type of portmanteau test in the frequency domain which is derived from the discrete cosine transform(DCT). For the stationary time series, DCT coefficients are asymptotically independent and their variances are expressed by linear combinations of autocovariances. The covariance matrix of DCT coefficients for white noises is diagonal matrix whose diagonal elements is the variance of time series. A simple way to test the independence of time series is that we divide DCT coefficients into two or three parts and then compare sample variances. We also do this by testing the slope in the linear regression model of which the response variables are absolute values or squares of coefficients. Simulation results show that the proposed tests has much higher powers than Ljung-Box test in most cases of our experiments.