• 제목/요약/키워드: 공간 자기회귀 모형

검색결과 60건 처리시간 0.031초

방향성 공간적 조건부 자기회귀 모형의 베이즈 분석 방법 (Bayesian analysis of directional conditionally autoregressive models)

  • 경민정
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권5호
    • /
    • pp.1133-1146
    • /
    • 2016
  • 공간통계 방법 중 지역에 대한 어떤 집합체 자료나 평균자료들을 분석하는데 일반적으로 공간적 자기회귀 (conditionally autoregressive) 모형을 사용한다. 공간적 자기회귀 모형에 정의되는 공간적 이웃 소지역들은 중점의 거리나 근접성으로 정의된다. Kyung과 Ghosh (2009)는 방향에 따라서 이웃간 자기상관성의 크기가 다른 확장된 공간 모형을 제시하였다. 제안된 방향적 조건부 자기회귀 (directional conditionally autoregressive) 모형은 고유 이방성을 모형화하여 기존의 CAR과정을 일반화한다. 제시한 방향적 조건부 자기회귀모형의 모수추정으로 마르코프 체인 몬테 카를로 방법을 기반으로 한 베이즈 추정법을 제시한다. 제시한 모형을 스코틀랜드 그레이터 글래스고우의 로그변환된 부동산 가격에 적용하여 조건부 자기회귀모형과 비교하였다.

방향성을 고려한 공간적 조건부 자기회귀 모형 (Directional conditionally autoregressive models)

  • 경민정
    • 응용통계연구
    • /
    • 제29권5호
    • /
    • pp.835-847
    • /
    • 2016
  • 공간통계 방법 중 지역에 대한 어떤 집합체 자료나 평균자료들을 분석하는데 일반적으로 공간적 자기회귀(conditionally autoregressive) 모형을 사용한다. 공간적 자기회귀 모형에 정의되는 공간적 이웃 소지역들은 중점의 거리나 근접성으로 정의된다. Kyung과 Ghosh (2010)는 방향에 따라서 이웃간 자기상관성의 크기가 다른 공간적 확장 모형을 제시하였다. 제안된 방향적 조건부 자기회귀(directional conditionally autoregressive) 모형은 고유 이방성을 모형화하여 기존의 CAR과정을 일반화한다. 제시한 방향적 조건부 자기회귀모형의 최대우도 추정량의 특성에 대해 설명하였고, 스코틀랜드 그레이터 글래스고우의 로그변환된 부동산 가격에 적용하여 조건부 자기회귀모형과 비교하였다.

공간적 자기상관성과 도시특성 요소를 고려한 자연재해 피해 분석 (Estimation of the Natural Damage Disaster Considering the Spatial Autocorrelation and Urban Characteristics)

  • 서만훈;이재송;최열
    • 대한토목학회논문집
    • /
    • 제36권4호
    • /
    • pp.723-733
    • /
    • 2016
  • 본 연구는 도시특성 요소가 자연재해 피해액에 미치는 영향을 분석하는 것을 목적으로 한다. 특히, 자연재해 피해액에 대한 공간적 자기상관성을 분석하고, 이를 고려한 공간회귀모형을 통한 실증분석을 실시하였다. 연구 대상지는 울릉군, 제주시, 서귀포시를 제외한 전국의 227개 지방자치단체로 설정하였고, 수집할 수 있는 가장 최근의 자료가 2013년이라는 점을 고려하여 분석 시점을 2013년으로 설정하였다. 여기서 울릉군, 제주시, 서귀포시를 제외한 것은 해당 지역들이 육지와 원거리에 있어 공간적 자기상관성 분석에서의 오차 내지는 오류가 발생할 소지가 있기 때문이다. 공간적 자기상관성 분석 결과, 2013년의 전국 지자체에서 발생한 자연재해 피해액은 통계적으로 유의한 공간적 자기상관성이 존재하는 것으로 도출되었다. 따라서 공간회귀모형을 활용하여 공간적 자기상관성을 통제할 필요가 있었고, 공간회귀모형과 OLS회귀모형의 비교를 통하여 공간회귀모형 중 공간시차모형이 최적합 모형인 것을 확인하였다. 공간회귀모형의 추정 결과를 살펴보면, 주거지역 면적이 증가할수록 자연재해 피해액이 감소하는 것으로 추정되었다. 반면에 녹지지역 및 하천 면적은 증가할수록 자연재해 피해액을 증가시키는 것으로 추정되었고, 통제변수로 활용된 연 강수량과 강우강도도 자연재해 피해액의 증가 요인으로 추정되었다. 실증분석 결과를 토대로 향후 자연재해 피해액 저감을 위하여 피해액 증가 요인에 대한 적절한 정책의 수립과 시행이 필요하다고 사료된다.

공간 자기회귀모형의 식별 (Model identification of spatial autoregressive data analysis)

  • 손건태;백지선
    • 응용통계연구
    • /
    • 제10권1호
    • /
    • pp.121-136
    • /
    • 1997
  • 공간자료는 공간 위치의 변화에 따라 관찰되는 자료이다. 본 논문에서는 공간자료를 가지고 행 방향, 열 방향, 대각선 방향으로 나누어 시계열의 모형 식별에서 사용되는 Box-Jenkins 방법과 식별통계량, 행태인식법을 공간 자기회귀모형에 적용하여 모형을 식별해 보고 모의실험을 통하여 식별 방법들을 비교해 보았다.

  • PDF

공간적탐색기법을 이용한 부산 주택시장 다이나믹스 분석 (Busan Housing Market Dynamics Analysis with ESDA using MATLAB Application)

  • 정건섭
    • 한국콘텐츠학회논문지
    • /
    • 제12권2호
    • /
    • pp.461-471
    • /
    • 2012
  • 본 논문의 목적은 공간적탐색기법을 이용한 부산 주택시장 다이나믹스 분석으로써 MATLAB toolbox M-file을 이용하였다. 본 연구에서 사용된 자료는 2006년부터 2009년 2분기까지 공개된 부산지역 아파트 실거래가 64,530개 자료를 기준으로 법정동을 분류하여 각 평균값을 분석에 이용하였다. 주택시장분석에 많이 이용되는 헤도닉가격 모형은 도시주택경제 분야에서 주택시장 다이나믹스를 설명하는데 강력한 분석기법의 하나이다. 그럼에도 불구하고 전통적인 헤도닉가격 모형은 공간적자기상관의 영향력을 반영하지 않는 단점이 있다. 따라서 본 논문에서는 공간자기상관 관계를 반영한 다양한 공간계량모형, 예를 들어, 공간자기회귀모형(SAR), 공간오차모형(SEM), 일반공간모형(SAC) 등을 보통최소자승법을 이용한 전통적 헤도닉가격 모형과 비교하고자 한다. 이를 위해 결정계수($R^2$), 분산(${\sigma}^2$), 우도함수(Likelihood)의 값 등의 지표들을 이용하였다. 분석결과 공간자기상관을 고려한 공간계량모형이 전통적 헤도닉모형에 비해 높은 설명력을 보여주고 있다. 공간계량모형에서는 공간오차모형(SEM)과 일반공간모형(SAC)이 공간자기회귀모형(SAR) 보다 우수한 설명력을 보이고 있다.

시공간자기회귀(STAR)모형을 이용한 부동산 가격 추정에 관한 연구 (An Empirical Study on the Estimation of Housing Sales Price using Spatiotemporal Autoregressive Model)

  • 전해정;박헌수
    • 부동산연구
    • /
    • 제24권1호
    • /
    • pp.7-14
    • /
    • 2014
  • 본 연구는 2006년 1월부터 2013년 6월까지의 서울시 아파트 개별 실거래가격에 대한 시공간 자료로 시공간자기상관의 문제를 헤도닉가격결정모형에 의한 통상최소자승법(OLS), 시간효과를 고려한 시간자기회귀모형(TAR), 공간효과를 고려한 공간자기회귀모형(SAR)과 시공간자기회귀모형(STAR)을 이용해 아파트 가격 추정결과를 비교분석하였다. 실증분석결과, STAR모형이 기존의 OLS에 비해 수정결정계수가 약 10% 증가하였으며, 추정오차는 약 18% 감소한 것으로 나타나 시공간효과를 고려했을 때 아파트 가격 추정이 기존모형에 비해 정확함을 알 수가 있었다. STAR모형 분석결과, 아파트 매매가격에 전용면적(-), 아파트연수(-), 저층더미(-), 개별난방(-), 도시가스(-), 재건축더미(+), 계단식(+), 단지규모(+)등이 영향을 주는 것으로 나타났으며 다른 분석방법론과도 대부분 같은 부호를 나타냈다. 시공간자기회귀모형을 이용해 부동산 가격을 추정시 정부 당국자는 부동산시장의 동향을 정확히 파악해 정책을 수립 집행해 정책효율을 높을 수 있고 투자자의 입장에서는 객관적인 정보를 바탕으로 합리적 투자를 할 수 있다.

공간통계량을 활용한 베이지안 자기 포아송 모형을 이용한 소지역 통계 (Small Area Estimation Using Bayesian Auto Poisson Model with Spatial Statistics)

  • 이상은
    • 응용통계연구
    • /
    • 제19권3호
    • /
    • pp.421-430
    • /
    • 2006
  • 표본조사에서는 일반적으로 지형학적 범위가 넓거나 흔히 우리가 알고 있는 지형적 범위 즉시 또는 도 단위로 표본설계가 이루어진다. 그러므로 지형학적 범위가 작은 소지역은 충분한 표본의 확보가 불가능하며 따라서 정확한 소지역 통계를 얻는 것은 매우 어렵다. 이러한 문제로 정확한 소지역 통계를 얻기 위한 연구가 활발히 진행되고 있다. 최근 신기일과 이상은(2003)은 공간통계 모형을 이용한 소지역 추정을 연구하였다. 본 논문은 신기일과 이상은(2003)의 공간자기회귀(Spatial Autoregressive: SAR) 모형을 확장한 모형인 베이지안 자기 포아송 모형 (Bayesian Auto-Poisson Model: BAPM)을 이용한 소지역 추정에 관하여 연구하였다. 분석에 사용된 자료는 호주의 1998년 장애인 통계 (Survey of Disability, Aging and Cares:SDAC)이 며 MSE, MB 그러고 회귀 분석을 이용한 편의 분석기법이 비교에 사용되었다.

Regression-Kriging 모형을 이용한 인구분포 추정에 관한 연구 (Population Distribution Estimation Using Regression-Kriging Model)

  • 김병선;구자용;최진무
    • 대한지리학회지
    • /
    • 제45권6호
    • /
    • pp.806-819
    • /
    • 2010
  • 센서스 단위의 인구자료는 기초적인 인문사회 자료로 행정구역 단위로 요약되어 공간분석에 시용된다. 정밀한 인구 분포를 추정하기 위해 기존의 연구에서는 위성영상과 회귀분석 모형을 이용하였다. 하지만 회귀식에 의한 추정치는 공간자료의 공간적자기상관과 잔차 때문에 정확도에 있어 한계가 있었다. 본 연구는 회귀모형과 회귀모형에서 추출된 잔차에 대해 공간적자기상관을 고려하도록 크리깅 보간하는 RK모형(Regression Kriging Model)을 이용하여 인구분포의 추정 정확도를 향상하였다. RK모형을 적용하여 서울시의 4개구를 대상으로 사례분석을 하였으며, 모형의 효율성을 검증하기 위해 회귀분석만을 이용한 예측 결과와 RK모형을 이용한 예측 결과를 서로 비교하였다. 비교한 결과로 상관관계 계수 평균제곱근 오차, G 통계량 수치에서 RK모형의 추정 정확도가 기존의 회귀모형에 비해 높게 나온 것을 확인할수 있었다. 향후 정확한 인구추정을 위해 RK모형이 많이 활용될 수 있을 것이다.

건강 관련 삶의 질의 사회인구학적 상관요인에 대한 공간분석

  • 조동기
    • 한국인구학
    • /
    • 제32권3호
    • /
    • pp.1-20
    • /
    • 2009
  • 본 연구는 지리정보시스템(GIS)과 지리적 가중 회귀(GWR)를 이용하여 건강 관련 삶의 질(HRQoL)의 사회인구학적 상관요인에 대한 공간분석을 시도한다. 관찰의 독립성과 오차의 동분산성을 가정하는 전통적 회귀분석과 달리, 지리적 가중 회귀분석은 속성정보뿐만 아니라 공간정보를 활용하는 공간분석 기법이다. 분석모형은 건강 관련 삶의 질을 종합적으로 측정하는 EQ-5D를 종속변수로 하고 지역의 사회인구학적 특성인 노령인구비율, 조이혼율, 병상수, 재정자주도를 독립변수로 하여 구성하였다. 종속변수는 질병관리본부에서 실시한 <지역사회건강조사>의 자료를 이용하였고, 독립변수는 통계청 온라인 DB에 수록된 지역별 자료를 이용하였다. 모형을 추정해 본 결과 전반적으로 사회적 특성보다는 노령인구비율이나 조이혼율과 같은 인구학적 특성이 건강 관련 삶의 질에 더 많은 영향을 미치는 것으로 나타났다. 공간적 변이를 고려하는 지역모형은 전역모형에서 드러나지 않았던 중요한 유형을 보여주는데, 노령인구비율 변수와 조이혼율 변수의 지역별 추정치를 지도상으로 살펴본 결과 변수들의 효과가 공간적 위치에 따라 차이를 보인다는 점이 확인되었다. 분석 결과는 또한 지리적 가중 회귀분석이 전통적 회귀분석에 비해 공간적 자기상관의 문제를 극복하고 모형의 부합도를 증가시킨다는 것을 보여준다.

오차항이 SAR(1)을 따르는 공간선형회귀모형에서 일반화 최대엔트로피 추정량에 관한 연구 (Generalized Maximum Entropy Estimator for the Linear Regression Model with a Spatial Autoregressive Disturbance)

  • 전수영;임성섭
    • Communications for Statistical Applications and Methods
    • /
    • 제16권2호
    • /
    • pp.265-275
    • /
    • 2009
  • 지역적 공간의 특성을 고려한 공간선형회귀모형을 다루는 대부분의 연구들에서 사용되고 있는 자료는 완전한 상태임을 고려하고 있다. 하지만 공간선형회귀모형을 정확히 추론함에 있어서 완전한 자료가 사용 가능한 경우는 그다지 많지가 않은 것이 현실이다. 만약 이러한 상황을 고려하지 않고 통계적 추론을 할 경우 잘못된 결론이 도출될 수 있다. 본 연구에서는 오차항이 일차 공간자기상관을 따르는 공간선형회귀모형에서 자료가 불완전한 상태 일 경우 일반화 최대엔트로피 형식을 이용하여 미지의 모수를 추정하는 방법을 제안하였고 몬테카를로 모의실험을 통하여 여러 전통적인 추정량들과 효율성을 비교하였다. 그 결과, 자료가 불완전한 상태에서 일반화 최대엔트로피 추정량이 다른 추정방법들에 비해 효율적인 추정치를 제공하였다.