• Title/Summary/Keyword: 공간 생성 맵

Search Result 95, Processing Time 0.025 seconds

A GPU-based Terrain Rendering using Multi-resolution Bias Map (다해상도 편향맵을 이용한 GPU기반의 지형 렌더링)

  • Lee, Eun-Seok;Kim, Tae-Gwon;Lee, Jin-Hee;Shin, Byeong-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.314-316
    • /
    • 2012
  • 대용량 지형 데이터를 실시간에 렌더링 하기 위해 여러 가지 연속상세단계 기법들이 연구되었다. 하지만 이러한 방법을 적용해도 지형 데이터가 하드웨어에서 처리할 수 있는 크기보다 클 경우 과도한 간략화로 인한 기하오차가 발생하거나 프레임률이 저하된다. 또한 기존 연속상세단계 기법을 수행하기 위해 만들어진 자료구조들 또한 지형 데이터의 크기에 비례하여 커지므로 메모리와 전처리 시간이 많이 소요된다. 본 논문에서는 적은 개수의 정점으로 효과적인 지형 렌더링이 가능한 편향맵을 다해상도로 확장하여 별도의 자료구조가 따로 필요 없는 간단한 연속상세단계 기법을 제안한다. 이 방법은 적은 메모리 용량으로 높은 정확도의 지형을 실시간에 렌더링 할 수 있다. 연속상세단계 선택은 보다 빠른 처리를 위해 GPU에서 패치 단위의 테셀레이션을 통해서 단일 패스로 수행된다. 상세단계가 선택으로 세분화 된 지형의 각 정점들은 화면 공간상의 오차를 참조하여 각각의 상세단계를 선택한 후 해당되는 편향맵에 저장된 이동벡터만큼 이동하여 최종 지형 메쉬를 생성한다. 제안한 방법은 전처리 단계를 포함한 모든 처리가 GPU에서 수행되므로 속도가 빠르고 적은 정점으로 보다 정확한 지형을 렌더링 할 수 있다.

Depth Map Generation Using Infocused and Defocused Images (초점 영상 및 비초점 영상으로부터 깊이맵을 생성하는 방법)

  • Mahmoudpour, Saeed;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.362-371
    • /
    • 2014
  • Blur variation caused by camera de-focusing provides a proper cue for depth estimation. Depth from Defocus (DFD) technique calculates the blur amount present in an image considering that blur amount is directly related to scene depth. Conventional DFD methods use two defocused images that might yield the low quality of an estimated depth map as well as a reconstructed infocused image. To solve this, a new DFD methodology based on infocused and defocused images is proposed in this paper. In the proposed method, the outcome of Subbaro's DFD is combined with a novel edge blur estimation method so that improved blur estimation can be achieved. In addition, a saliency map mitigates the ill-posed problem of blur estimation in the region with low intensity variation. For validating the feasibility of the proposed method, twenty image sets of infocused and defocused images with 2K FHD resolution were acquired from a camera with a focus control in the experiments. 3D stereoscopic image generated by an estimated depth map and an input infocused image could deliver the satisfactory 3D perception in terms of spatial depth perception of scene objects.

Autonomous Driving Platform using Hybrid Camera System (복합형 카메라 시스템을 이용한 자율주행 차량 플랫폼)

  • Eun-Kyung Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1307-1312
    • /
    • 2023
  • In this paper, we propose a hybrid camera system that combines cameras with different focal lengths and LiDAR (Light Detection and Ranging) sensors to address the core components of autonomous driving perception technology, which include object recognition and distance measurement. We extract objects within the scene and generate precise location and distance information for these objects using the proposed hybrid camera system. Initially, we employ the YOLO7 algorithm, widely utilized in the field of autonomous driving due to its advantages of fast computation, high accuracy, and real-time processing, for object recognition within the scene. Subsequently, we use multi-focal cameras to create depth maps to generate object positions and distance information. To enhance distance accuracy, we integrate the 3D distance information obtained from LiDAR sensors with the generated depth maps. In this paper, we introduce not only an autonomous vehicle platform capable of more accurately perceiving its surroundings during operation based on the proposed hybrid camera system, but also provide precise 3D spatial location and distance information. We anticipate that this will improve the safety and efficiency of autonomous vehicles.

A stereo matching algorithm in pixel-based disparity space image (화소기반 변이공간영상에서의 스테레오 정합)

  • 김철환;이호근;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6C
    • /
    • pp.848-856
    • /
    • 2004
  • In this paper, a fast stereo matching algorithm based on pixel-wise matching strategy, which can get a stable and accurate disparity map, is proposed. Since a stereo image pair has small differences each other and the differences between left and right images are just caused by horizontal shifts with some order, the matching using a large window will not be needed within a given search range. However, disparity results of conventional pixel-based matching methods are somewhat unstable and wrinkled, the principal direction of disparities is checked by the accumulated cost along a path on array with the dynamic programming method. Experimental results showed that the proposed method could remove almost all disparity noise and set a good quality disparity map in very short time.

Contrast Enhancement based on Gaussian Region Segmentation (가우시안 영역 분리 기반 명암 대비 향상)

  • Shim, Woosung
    • Journal of Broadcast Engineering
    • /
    • v.22 no.5
    • /
    • pp.608-617
    • /
    • 2017
  • Methods of contrast enhancement have problem such as side effect of over-enhancement with non-gaussian histogram distribution, tradeoff enhancement efficiency against brightness preserving. In order to enhance contrast at various histogram distribution, segmentation to region with gaussian distribution and then enhance contrast each region. First, we segment an image into several regions using GMM(Gaussian Mixture Model)fitting by that k-mean clustering and EM(Expectation-Maximization) in $L^*a^*b^*$ color space. As a result region segmentation, we get the region map and probability map. Then we apply local contrast enhancement algorithm that mean shift to minimum overlapping of each region and preserve brightness histogram equalization. Experiment result show that proposed region based contrast enhancement method compare to the conventional method as AMBE(AbsoluteMean Brightness Error) and AE(Average Entropy), brightness is maintained and represented detail information.

A Bitmap Index for Chunk-Based MOLAP Cubes (청크 기반 MOLAP 큐브를 위한 비트맵 인덱스)

  • Lim, Yoon-Sun;Kim, Myung
    • Journal of KIISE:Databases
    • /
    • v.30 no.3
    • /
    • pp.225-236
    • /
    • 2003
  • MOLAP systems store data in a multidimensional away called a 'cube' and access them using way indexes. When a cube is placed into disk, it can be Partitioned into a set of chunks of the same side length. Such a cube storage scheme is called the chunk-based MOLAP cube storage scheme. It gives data clustering effect so that all the dimensions are guaranteed to get a fair chance in terms of the query processing speed. In order to achieve high space utilization, sparse chunks are further compressed. Due to data compression, the relative position of chunks cannot be obtained in constant time without using indexes. In this paper, we propose a bitmap index for chunk-based MOLAP cubes. The index can be constructed along with the corresponding cube generation. The relative position of chunks is retained in the index so that chunk retrieval can be done in constant time. We placed in an index block as many chunks as possible so that the number of index searches is minimized for OLAP operations such as range queries. We showed the proposed index is efficient by comparing it with multidimensional indexes such as UB-tree and grid file in terms of time and space.

A Method of Generating Trafficability Analysis Map for UGV Navigation (지상무인로봇의 경로계획을 위한 가동맵 생성 방법)

  • Chang, Hye Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.79-85
    • /
    • 2014
  • For the successful operation of unmanned ground vehicles(UGVs), optimal path planning should be considered with trafficability analysis, threat analysis, and so on. From among these, trafficability analysis is immensely important for safeness of UGVs especially in the case of driving the off-road such as unpaved road, grassland, and open fields. Geographical information has a pivotal role in extracting data and measuring cost for specified regions of interest. In this paper, we review possibilities to apply Land Cover Map(LCM) as a new, fundamental source and propose a new generation method of trafficability analysis map for optimal path planning of UGV. The simulation results show that the proposed method significantly improve the previous method by applying LCM either alone or in combination with the other GIS.

Improved shape-based interpolation for three-dimensional reconstruction in gray-scale images (3차원 그레이-스케일 영상 재구성을 위한 개선된 형태-기반 보간)

  • Kim Hong, Helen;Park, Joo-Young;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.1
    • /
    • pp.77-85
    • /
    • 1996
  • Using a series of medical tomograms, we can reconstruct internal organs or other objects of interest and generate 3-D images. It is generally accepted that the axial resolution determined by two sequential image slices is lower than the planar resolution in one image slices. Therefore, various methods of interpolation were developed for an accurate display of reconstructed images. In this paper, a new algorithm for 3-D reconstruction of the medical images such as MRI and X-ray CT is suggested. The algorithm is shape-based and utilizes parts of the gray-level information. We extend the conventional shape-based interpolation of the binary images to the gray-scale images using the shortest distance map. Using this new algorithm, We could reduce the execution time for interpolation while keeping similar high quality of the reconstructed images with reduced execution time and is applicable to the various medical tomograms.

  • PDF

Smooth Path Generation using Hexagonal Cell Representation (육각형 격자를 사용한 부드러운 경로생성)

  • Jung, Dong-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1124-1132
    • /
    • 2011
  • This paper deals with smooth path generation using B-spline for fixed-wing unmanned aerial vehicles manuevering in 2D environment. Hexagonal cell representation is employed to model the 2D environment, which features increased connectivity among cells over square cell representation. Subsequently, hexagonal cell representation enables smoother path generation based on a discrete sequence of path from the path planner. In addition, we present an on-line path smoothing algorithm incorporating B-spline path templates. The path templates are computed off-line by taking into account all possible path sequences within finite horizon. During on-line implementation, the B-spline curves from the templates are stitched together repeatedly to come up with a reference trajectory for UAVs. This method is an effective way of generating smooth path with reduced on-line computation requirement, hence it can be implemented on a small low-cost autopilot that has limited computational resources.

Octree Partition Method using CLOD for Large-scale Environments (넓은 지형처리를 위한 CLOD가 적용된 옥트리)

  • 이승욱
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.535-537
    • /
    • 2001
  • 3D MMORPG(Massive Multi-play Outline Role Playing Game) 게임은 넓은 3차원원지형을 실시간으로 표현되어야 하며, 많은 어려움이 따른다. 본 논문에서는 이러한 지형 처리를 위하여 메쉬나 버텍스, 혹은 폴리곤으로 사실적인 지형처리와 렌드링 속도 향상을 위하여 3차원 폴리곤을 동적으로 생성시키는 방법을 이용하려고 한다. 넓은 지형을 처리하기 위해서는 전체를 한번에 표현하기보다는 페이지 단위로 처리하기 위하여 격자화된 타일로 이루어진 맵으로 처리할 수 있다. Height field 처리 기법은 일정한 영역을 페이지 단위로 구분하고 처리할 수 있다. 옥트리를 이용하여 공간을 입체적인 컬링 방법으로 분할하고, 이를 세부 수준으로 나누어 처리하기 위해 CLOD(Continuous Level of Detail) 개념을 적용할 수 있다. 거리의 변화에 따라 지명을 표현하는 vertex들을 병합 또는 삭제함으로써 그 표현의 정도를 동적으로 달리 할 수 있는 CLOD를 이용하여 카메라의 위치와 방향에 따라 적절한 폴리곤을 생성해 낼 수 있다. 본 논문은 3 차원의 넓은 외부 지형을 실시간으로 처리할 경우 발생되는 그래픽 문제를 해결하기 위해 사용되는 방법 중에서 대표적인 방법을 통하여 효율적인 처리 기법을 제시하려 한다.

  • PDF