• Title/Summary/Keyword: 공간 데이터 변화감지

Search Result 31, Processing Time 0.027 seconds

An Adaptive Watermarking Scheme for Three-Dimensional Mesh Models (3차원 메쉬 모델의 적응형 워터마킹 방법)

  • 전정희;호요성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.41-50
    • /
    • 2003
  • For copyright protection of digital contents, we employ watermarking techniques to embed watermark signals into digital host data. In this paper we propose an adaptive watermarking algorithm for three-dimensional (3-D) mesh models. Watermark signals are inserted into vertex coordinates adaptively according to changes of their position values. While we embed strong watermarks in the areas of large variations, watermarks are weakly inserted in other areas. After we generate triangle strips by traversing the 3-D model and convert the Cartesian coordinates to the spherical coordinate system, we calculate variations of vertex positions along the traversed strips. Then, we insert watermark signals into the vertex coordinates adaptively according to the calculated variations. We demonstrate that imperceptibility of the inserted watermark is significantly improved and show the bit error rate (BER) for robustness.

Anomaly behavior detection using Negative Selection algorithm based anomaly detector (Negative Selection 알고리즘 기반 이상탐지기를 이용한 이상행 위 탐지)

  • 김미선;서재현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.391-394
    • /
    • 2004
  • Change of paradigm of network attack technique was begun by fast extension of the latest Internet and new attack form is appearing. But, Most intrusion detection systems detect informed attack type because is doing based on misuse detection, and active correspondence is difficult in new attack. Therefore, to heighten detection rate for new attack pattern, visibilitys to apply human immunity mechanism are appearing. In this paper, we create self-file from normal behavior profile about network packet and embody self recognition algorithm to use self-nonself discrimination in the human immune system to detect anomaly behavior. Sense change because monitors self-file creating anomaly detector based on Negative Selection Algorithm that is self recognition algorithm's one and detects anomaly behavior. And we achieve simulation to use DARPA Network Dataset and verify effectiveness of algorithm through the anomaly detection rate.

  • PDF

Towards a Machine Learning Approach for Monitoring Urban Morphology - Focused on a Boston Case Study - (도시 형태 변화 모니터링을 위한 머신러닝 기법의 가능성 - 보스톤 사례연구를 중심으로 -)

  • Hwang, Jie-Eun
    • Design Convergence Study
    • /
    • v.16 no.5
    • /
    • pp.125-140
    • /
    • 2017
  • This study explores potential capability of a machine learning approach for monitoring urban morphology based on an evident case study. The case study conveys year 2006 investigations on interpreting urban morphology of Boston Main Streets by applying a machine learning approach. From the lesson of the precedent study, in 2016, another field research and interview was conducted to compare changes in urban situation, data commons culture, and technology innovation during the decade. This paper describes open possibilities to advance urban monitoring for morphological changes. Most of all, a multi-participatory data platform enables managing urban data system in real time. Second, collaboration with machines with artificial intelligence can intervene the framework of the urban management system as well as transform it through new demands of innovative industries. Recently, urban regeneration became a dominant urban planning strategy in Korean, therefore, urban monitoring is on demand. It is timely important to correspond to in-situ problems based on empirical research.

Configuration of clustering and routing algorithms for energy efficiency by wireless sensor network in ship (선박 내 무선 센서 네트워크에서 에너지 효율을 위한 클러스터링 및 라우팅 알고리즘의 구성)

  • Kim, Mi-jin;Yu, Yun-Sik;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.435-438
    • /
    • 2012
  • Today, In all fields, As combination of ubiquitous computing-based technologies between electronic space and physical space, has been active trend research about wireless integration sensor network between sensors and wireless technology. Also, but in ship is underway research about Ship Area Network(SAN) of intelligent ship to integrate wireless technology, ship is required SAN-bridge technology of a variety of wired, wireless network integration and heterogeneous sensor and interoperability of the controller and SAN configuration management technology of remote control. Ship keep safe of all the surrounding environment including crew besides structural safety and freight management monitoring. In this paper, for monitoring design such as on climate change detection and temperature, pressure about various structures, there identify technology trends for routing and data aggregation to use energy efficiency in wireless sensor network. And to analyze self-organizing clustering method, study For wireless sensor network configuration in ship.

  • PDF

A Study on forest fires Prediction and Detection Algorithm using Intelligent Context-awareness sensor (상황인지 센서를 활용한 지능형 산불 이동 예측 및 탐지 알고리즘에 관한 연구)

  • Kim, Hyeng-jun;Shin, Gyu-young;Woo, Byeong-hun;Koo, Nam-kyoung;Jang, Kyung-sik;Lee, Kang-whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1506-1514
    • /
    • 2015
  • In this paper, we proposed a forest fires prediction and detection system. It could provide a situation of fire prediction and detection methods using context awareness sensor. A fire occurs wide range of sensing a fire in a single camera sensor, it is difficult to detect the occurrence of a fire. In this paper, we propose an algorithm for real-time by using a temperature sensor, humidity, Co2, the flame presence information acquired and comparing the data based on multiple conditions, analyze and determine the weighting according to fire in complex situations. In addition, it is possible to differential management of intensive fire detection and prediction for required dividing the state of fire zone. Therefore we propose an algorithm to determine the prediction and detection from the fire parameters as an temperature, humidity, Co2 and the flame in real-time by using a context awareness sensor and also suggest algorithm that provide the path of fire diffusion and service the secure safety zone prediction.

Dangerous Area Prediction Technique for Preventing Disaster based on Outside Sensor Network (실외 센서네트워크 기반 재해방지 시스템을 위한 위험지역 예측기법)

  • Jung, Young-Jin;Kim, Hak-Cheol;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.13D no.6 s.109
    • /
    • pp.775-788
    • /
    • 2006
  • Many disaster monitoring systems are constantly studied to prevent disasters such as environmental pollution, the breaking of a tunnel and a building, flooding, storm earthquake according to the progress of wireless telecommunication, the miniaturization of terminal devices, and the spread of sensor network. A disaster monitoring system can extract information of a remote place, process sensor data with rules to recognize disaster situation, and provide work for preventing disaster. However existing monitoring systems are not enough to predict and prevent disaster, because they can only process current sensor data through utilizing simple aggregation function and operators. In this paper, we design and implement a disaster prevention system to predict near future dangerous area through using outside sensor network and spatial Information. The provided prediction technique considers the change of spatial information over time with current sensor data, and indicates the place that could be dangerous in near future. The system can recognize which place would be dangerous and prepare the disaster prevention. Therefore, damage of disaster and cost of recovery would be reduced. The provided disaster prevention system and prediction technique could be applied to various disaster prevention systems and be utilized for preventing disaster and reducing damages.

Space Radiation Effect on Si Solar Cells (우주 방사능에 의한 실리콘 태양 전지의 특성 변화)

  • Lee, Jae-Jin;Kwak, Young-Sil;Hwang, Jung-A;Bong, Su-Chang;Cho, Kyung-Seok;Jeong, Seong-In;Kim, Kyung-Hee;Choi, Han-Woo;Han, Young-Hwan;Choi, Yong-Woon;Seong, Baek-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.435-444
    • /
    • 2008
  • High energy charged particles are trapped by geomagnetic field in the region named Van Allen Belt. These particles can move to low altitude along magnetic field and threaten even low altitude spacecraft. Space Radiation can cause equipment failures and on occasions can even destroy operations of satellites in orbit. Sun sensors aboard Science and Technology Satellite (STSAT-l) was designed to detect sun light with silicon solar cells which performance was degraded during satellite operation. In this study, we try to identify which particle contribute to the solar cell degradation with ground based radiation facilities. We measured the short circuit current after bombarding electrons and protons on the solar cells same as STSAT-1 sun sensors. Also we estimated particle flux on the STSAT-l orbit with analyzing NOAA POES particle data. Our result clearly shows STSAT-l solar cell degradation was caused by energetic protons which energy is about 700keV to 1.5MeV. Our result can be applied to estimate solar cell conditions of other satellites.

Design and Array Signal Suggestion of Array Type Pulsed Eddy Current Probe for Health Monitoring of Metal Tubes (금속배관 건전성 감시를 위한 배열형 펄스와전류 탐촉자의 설계 및 배열신호 제안)

  • Shin, Young Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.291-298
    • /
    • 2015
  • An array type probe for monitoring metal tubes is proposed in this paper which utilizes peak value and peak time of a pulsed eddy current(PEC) signal. The probe consists of an array of encircling coils along a tube and the outside of coils is shielded by ferrite to prevent source magnetic fields from directly affecting sensor signals since it is the magnetic fields produced by eddy currents that reflect the condition of metal tubes. The positions of both exciter and sensor coils are consecutively moved automatically so that manual scanning is not necessary. At one position of send-receive coils, peak value and peak time are extracted from a sensor PEC signal and these data are accumulated for all positions to form an array type peak value signal and an array type peak time signal. Numerical simulation was performed using the backward difference method in time and the finite element method for spatial analysis. Simulation results showed that peak value increases and the peak appears earlier as the defect depth or length increases. The proposed array signals are shown to be excellent in reflecting the defect location as well as variations of defect depth and length within the array probe.

Advances, Limitations, and Future Applications of Aerospace and Geospatial Technologies for Apple IPM (사과 IPM을 위한 항공 및 지리정보 기술의 진보, 제한 및 미래 응용)

  • Park, Yong-Lak;Cho, Jum Rae;Choi, Kyung-Hee;Kim, Hyun Ran;Kim, Ji Won;Kim, Se Jin;Lee, Dong-Hyuk;Park, Chang-Gyu;Cho, Young Sik
    • Korean journal of applied entomology
    • /
    • v.60 no.1
    • /
    • pp.135-143
    • /
    • 2021
  • Aerospace and geospatial technologies have become more accessible by researchers and agricultural practitioners, and these technologies can play a pivotal role in transforming current pest management practices in agriculture and forestry. During the past 20 years, technologies including satellites, manned and unmanned aircraft, spectral sensors, information systems, and autonomous field equipment, have been used to detect pests and apply control measures site-specifically. Despite the availability of aerospace and geospatial technologies, along with big-data-driven artificial intelligence, applications of such technologies to apple IPM have not been realized yet. Using a case study conducted at the Korea Apple Research Institute, this article discusses the advances and limitations of current aerospace and geospatial technologies that can be used for improving apple IPM.

A study for improvement of far-distance performance of a tunnel accident detection system by using an inverse perspective transformation (역 원근변환 기법을 이용한 터널 영상유고시스템의 원거리 감지 성능 향상에 관한 연구)

  • Lee, Kyu Beom;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.247-262
    • /
    • 2022
  • In domestic tunnels, it is mandatory to install CCTVs in tunnels longer than 200 m which are also recommended by installation of a CCTV-based automatic accident detection system. In general, the CCTVs in the tunnel are installed at a low height as well as near by the moving vehicles due to the spatial limitation of tunnel structure, so a severe perspective effect takes place in the distance of installed CCTV and moving vehicles. Because of this effect, conventional CCTV-based accident detection systems in tunnel are known in general to be very hard to achieve the performance in detection of unexpected accidents such as stop or reversely moving vehicles, person on the road and fires, especially far from 100 m. Therefore, in this study, the region of interest is set up and a new concept of inverse perspective transformation technique is introduced. Since moving vehicles in the transformed image is enlarged proportionally to the distance from CCTV, it is possible to achieve consistency in object detection and identification of actual speed of moving vehicles in distance. To show this aspect, two datasets in the same conditions are composed with the original and the transformed images of CCTV in tunnel, respectively. A comparison of variation of appearance speed and size of moving vehicles in distance are made. Then, the performances of the object detection in distance are compared with respect to the both trained deep-learning models. As a result, the model case with the transformed images are able to achieve consistent performance in object and accident detections in distance even by 200 m.