본 논문에서는 수렴형 양안식 카메라 배열에서 효율적으로 깊이 지도를 생성하는 방법을 제안한다. 기존의 양안식 영상에서의 깊이 지도 추출 방법은 영상 정렬화 과정이 필수적이었다. 이는 평행형 배열에서는 효과가 있지만, 수렴형 배열에서는 영상을 왜곡시키는 문제를 발생시킨다. 본 논문에서 제안하는 방법은 영상 정렬화 과정을 생략하고, 에피폴라 조건에 따라서 직접적으로 깊이 값을 추출한다. 깊이 예측을 위한 Markov Random Field 에너지는 계층적 구조를 사용하여 복잡도를 낮춘 상수 공간 신뢰 확산 방식에 의해서 최적화한다. 이어서 좀 더 정확한 깊이 지도를 구하기 위해서 후처리 기술을 최종적으로 적용한다. 실험을 통해 본 논문에서 제안한 방법이 기존의 방법에 비해서 적은 제약으로 깊이 지도를 좀 더 안정적으로 추출할 수 있음을 보였다.
단안 영상에서의 깊이 추정은 주어진 시점에서 촬영된 2 차원 영상으로부터 객체까지의 3 차원 거리 정보를 추정하는 것이다. 최근 딥러닝 기반으로 단안 RGB 영상에서 깊이 정보 추정에 유용한 특징 맵을 추출하고 이를 이용해서 깊이를 추정하는 모델들이 기존 방법들의 성능을 넘어서면서 관련된 연구가 활발히 진행되고 있다. 또한 Attention Model 과 같이 특정 특징 맵의 채널 혹은 공간을 강조하여 전체적인 네트워크의 성능을 개선하는 연구가 소개되었다. 본 논문에서는 깊이 정보 추정을 위해 사용되는 특징 맵을 강조하기 위해서 Attention Model 을 추가한 AutoEncoder 기반의 깊이 추정 네트워크를 제안하고 적용 부분에 따른 네트워크의 깊이 정보 추정 성능을 평가 및 분석한다.
본 논문에서는 스테레오 카메라로부터 획득된 좌, 우 영상의 변이를 추정하여 3차원 공간 좌표(x, y, z)를 얻어내고, 거리측정과 가상공간 제어를 통해 사용자에게 현실감을 제공하는 실시간 3차원 공간 인식 시스템을 제안한다. 스테레오 카메라로 부터 획득된 좌, 우 영상은 시점의 차이 때문에 동일 물체에 대한 좌, 우 영상의 좌표 값의 차이를 발생시키는 데 이를 변이(disparity)라 정의한다. 관심 영역의 변이를 추정할 때 일반적으로 관심 영역의 모든 화소(pixel)의 변이를 추정하지만, 제안한 알고리즘에서는 관심 영역의 2차원 중심 좌표(x, y)의 변이만을 추정하여 계산량을 줄이고 실시간 처리가 가능하도록 하였다. 카메라 파라미터를 이용하여 획득된 변이로부터 깊이 정보(depth)를 얻어내고 3차원 공간 좌표를 획득한다. 손을 관심 영역으로 설정한 시스템에서 3차원 공간 좌표는 실시간으로 사용자의 손의 움직임에 의해 획득되고, 가상공간(virtual space)에 적용되어 사용자가 가상공간을 조작할 수 있는 듯한 느낌을 준다. 실험을 통해 제안한 알고리즘이 1.5m 거리 내에서의 깊이 측정시 평균 0.68cm의 오차를 가짐을 확인 할 수 있었다.
전투공간 시뮬레이션 결과를 가시화할 뿐 아니라 시나리오 가시화 중에 사용자가 선택한 엔티티의 상세한 관찰을 제공하기 위해 스테레오 3D 모델 뷰어를 개발하여 가시화 시스템의 프로토타입을 구성하였다. 전투공간 가시화를 위해서는 가시화 스프트웨어인 SIMDIS를 사용하였다. 사용자는 시뮬레이션 가시화 스크린 상에서 엔티티를 선택할 수 있으며, 이 엔티티의 자세한 관찰은 스테레오 3D 모델 뷰어에 가시화 된다. 모델 뷰어는 사용자에게 엔티티 관찰 시 몰입감과 인지도를 향상시키기 위하여 헤드 트래킹 기술을 적용하였다. 사용자의 위치를 추적하기 위해서는 깊이 카메라를 이용하였으며, 획득한 깊이 영상을 통해 실시간 사용자 헤드 트래킹을 적용하였다. 구현된 시스템은 SIMDIS를 이용한 전투공간 시뮬레이션 가시화와 스테레오 3D 뷰어를 각각 가시화하기 위하여 2D 디스플레이와 3D TV를 사용하였다.
본 연구에서는 모바일 화면에서의 효율적인 메뉴구조를 탐색해보고자 하였다. 실험 1에서는 유목의 명확성(명확, 불명확)과 깊이수준(2,3,5층), 아이템의 수(32, 64, 128개)에 따른 탐색 과제 수행 시간과 오류수의 차이를 알아보았다. 그 결과 유목이 명확할수록, 깊이수준이 낮을수록 그리고 제시된 아이템의 수가 적을수록 과제 수행 시간이 짧았고 오류를 적게 보였다. 또한 유목이 명확한 조건에서는 깊이수준과 아이템의 수에 따른 과제 수행 시간과 오류 수에 차이가 없었으나, 유목이 불명확한 조건에서는 깊이가 깊은 조건과 아이템의 수가 많은 조건에서 과제수행 시간이 더 많이 소요되었고, 더 많은 오류를 보였다. 실험 2에서는 깊이가 5수준인 메뉴 구조에서 유목의 명확성(명확, 불명확), 아이템의 수(32, 64, 128개), 공간단서 (색, 창, 숫자단서)에 따라 과제 수행시간과 오류수의 차이가 있는지 알아보았다. 그 결과 유목이 명확할수록, 아이템의 수가 적을수록 과제수행시간이 더 적게 걸렸고 더 적은 오류를 보였다. 특히 유목이 불명확한 조건에서는 아이템의 수가 많을수록 더 좋지 않은 수행을 보여 실험 1과 동일한 결과를 보여 주었다. 또한 실험 2의 결과, 그림이나 숫자를 통해 공간단서를 제공하는 것이 탐색 과정에서 발생하는 오류를 줄이는데 도움이 될 수 있음을 보여 주었다.
최근 무인 항공기(Unmanned Aerial Vehicle, UAV)는 다양한 임무수행이 가능한 무인 시스템이라는 점에서 크게 주목받고 있다. 특히 정찰, 추적 등의 임무는 영상을 이용하여 임무 수행이 이루어진다. 소형 무인 항공기의 경우 중량과 비용을 고려하여 단안 영상을 이용하는 임무 수행 연구가 활발하게 이루어지고 있다. 그러나 실제 지표면과 목표물이 고도 차이를 가지고 있어, 영상의 상대깊이를 고려하지 않은 3차원 거리는 임무 수행 시 오차 요인으로 작용 할 수 있다. 본 연구에서는 상대 깊이 추정을 위한 평균이동 알고리즘, 광류, 부분 공간법에 관하여 차례로 제시한다. 평균이동 알고리즘은 영상 내 목표물 추적과 관심영역을 결정하며 광류는 영상의 자기를 이용한 영상 이동 정보를 포함한다. 마지막으로 부분 공간법은 영상안의 움직임을 추정하며 각 영역의 상대깊이를 결정한다.
유역 모형은 강우가 유출에 이르는 과정을 수문학적으로 재현해낼 수 있는 도구이다. 초기의 모형은 간단한 수준에서 유출과정을 모의하는데 그쳤으나, 기술이 발전함에 따라 유역 모형에 적용되는 매개변수의 수가 점차 늘어나게 되며 이론적 신뢰성과 복잡성을 동시에 갖게 되었다. 유역 모형은 집중형 모형과 분포형 모형으로 대별할 수 있는데, 기존에는 저류 함수법을 근간으로 하는 개념 기반의 HEC-HMS HEC-RAS 등과 같은 집중형 모형을 널리 사용한 반면, 점차 격자 기반에서 물리적 계산을 통해 유출 과정을 모의할 수 있는 GSSHA, Vflo, SWAT과 같은 분포형 모형의 활용이 늘어나고 있는 추세이다. 집중형 모형은 관측자료를 통해 산정된 경험식에 의존하고 있는 반면, 분포형 모형의 경우 각 격자가 가지고 있는 시·공간적 매개변수를 통해 물리적으로 유출과정을 계산하여 신뢰성을 확보하기에 유리하며, 미계측 유역에서도 활용이 가능하다. 지하수는 유역 모형의 댜양한 매개변수들 중 지표면 유출량에 밀접한 영향을 미치는 인자이다. 그럼에도 아직까지 경험식에 의존한 집중형 모형이 주를 이루고 있는 국내에서는 분포형 모형에 적용가능한 매개변수 최적화에 대한 연구는 미진한 실정이다. 이에 본 연구에서는 분포형 유역 모형의 침투모의 과정에 관여하는 공간 매개변수 중 밀접한 연관을 띠고 있는 대수층 깊이에 대하여 분석하였다. 여러 공간매개변수 중 침투능과 관계가 깊은 대수층 깊이에 대해 가장 적합한 매개변수 값을 도출해 내는 것이 본 연구의 최종 목적이라고 할 수 있으며, 분석은 국내 자연하천 유역을 대상으로 분포형 유역 모형에 일반적인 수준으로 적용할수 있는 범위를 검토하였다. 본 연구를 통하여 분포형 유역 모형에서 하나의 매개변수인 대수층 깊이의 정량화에 기여되기를 바란다.
본 논문에서는 2대의 Kinect 카메라를 이용하여 실세계의 3차원 객체에 대한 복원을 수행하는 방법을 제안한다. 먼저 깊이 가중치가 추가된 계층적 결합형 양방향 필터를 이용하여 Kinect로부터 얻은 원본 깊이 영상을 보정한다. 그리고 카메라 캘리브레이션을 이용하여 카메라의 내부 파라미터와 외부 파라미터를 획득한다. 이를 이용해 3차원 워핑을 수행하여 각 시점의 데이터를 3차원 공간에 점군 모델로 복원하고 표면 모델링 방법을 이용하여 3차원 객체의 매끄러운 표면 모델을 생성한다. 실시간에 가까운 속도를 내기 위해서 계층적 결합형 양방향 필터와 3차원 워핑을 병렬 처리 프레임워크인 CUDA로 구현하여 고속화하였다. 실험을 통해 분리된 각 시점에서의 깊이 정보를 하나의 통합된 3차원 공간에 복원할 수 있었고 초당 5 fps의 속도로 동작하는 것을 확인하였다.
얼굴의 중요한 특징부분을 잘 나타내는 깊이 에지 정보를 사용하면 표정과 조명변화로 인한 얼굴 픽셀의 밝기 값 변화에 대해 강인한 특징벡터를 생성할 수 있다. 본 논문에서는 깊이 에지(depth edge)를 이용한 새로운 특징벡터를 제안하고 그 유용성에 대하여 실험하였다. 새롭게 제안한 특징벡터는 얼굴의 깊이 에지 영상을 수평과 수직 방향으로 투영하여 얻어지는 에지 강도 히스토그램을 이용하기 때문에 얼굴의 움직임으로 인한 변형에 영향을 받지 않는다. 또한, 실시간 검출과 인식이 매우 용이하다. 제안한 깊이 에지 기반 특징벡터와 백색광 영상의 픽셀 값 기반 특징벡터에 대해 부공간 투영기반의 얼굴인식 알고리즘을 적용하여 성능을 비교 평가하였다. 실험 결과, 얼굴의 깊이 에지에 기반한 얼굴인식이 기존의 백색광만을 이용한 방법에 비해 높은 인식성능을 보였다
3DoF+ 비디오 부호화 표준을 개발하고 있는 MPEG-I 비주얼 그룹은 표준화 과정에서 참조 SW 코덱인 TMIV(Test Model for Immersive Video)를 개발하고 있다. TMIV 는 제한된 공간에서 동시에 여러 위치에서 획득한 뷰(view)의 텍스처(texture) 비디오와 깊이(depth) 비디오를 효율적으로 압축하여 임의 시점의 뷰 렌더링(rendering)을 제공한다. TMIV 에서 수행되는 깊이 비디오의 비트 심도 스케일링 및 압축은 깊이 정보의 손실을 발생하며 이는 렌더링(rendering)된 임의 시점 비디오의 화질 저하를 야기한다. 본 논문에서는 보다 효율적인 깊이 비디오 압축을 위한 히스토그램 등화(histogram equalization) 기반의 구간별(piece-wise) 깊이 매핑 기법을 제안한다. 실험결과 제안기법은 자연 영상(natural sequence)의 End-to-End 부호화 성능에서 평균적으로 3.1%의 비트율 절감이 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.