• Title/Summary/Keyword: 공간 가중치 필터

Search Result 66, Processing Time 0.023 seconds

A Motion Adaptive Deinterlacing Algorithm Using Improved Motion Detection (향상된 움직임 탐색 기법을 적용한 움직임 적응적 디인터레이싱 알고리듬)

  • Yun, Janghyeok;Jeon, Gwanggil;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.167-177
    • /
    • 2013
  • In this paper, a motion adaptive deinterlacing algorithm is proposed. It consists of three parts: (1) modified edge-based line average, (2) pixel-based consequent five-field motion detection, and (3) block-based local characteristic for detecting true motion and calculating the motion intensity by using an improved method which is able to detect the inner part of moving objects precisely as well as to reduce the risk of false detection caused by intrinsic noises in the image. Depending on the detected motion activity level, it combines spatial and temporal methods with weighting factor. Simulations conducted on several video sequences indicate that the performance of the proposed method is superior to the conventional methods in terms of both subjective and objective video quality.

implementation of 3D Reconstruction using Multiple Kinect Cameras (다수의 Kinect 카메라를 이용한 3차원 객체 복원 구현)

  • Shin, Dong Won;Ho, Yo Sung
    • Smart Media Journal
    • /
    • v.3 no.4
    • /
    • pp.22-27
    • /
    • 2014
  • Three-dimensional image reconstruction allows us to represent real objects in the virtual space and observe the objects at arbitrary view points. This technique can be used in various application areas such as education, culture, and art. In this paper, we propose an implementation method of the high-quality three-dimensional object using multiple Kinect cameras released from Microsoft. First, We acquire color and depth images from triple Kinect cameras; Kinect cameras are placed in front of the object as a convergence form. Because original depth image includes some areas where have no depth values, we employ joint bilateral filter to refine these areas. In addition to the depth image problem, there is an color mismatch problem in color images of multiview system. In order to solve it, we exploit an color correction method using three-dimensional geometry. Through the experimental results, we found that three-dimensional object which is used the proposed method is more naturally represented than the original three-dimensional object in terms of the color and shape.

A Study on the CBR Pattern using Similarity and the Euclidean Calculation Pattern (유사도와 유클리디안 계산패턴을 이용한 CBR 패턴연구)

  • Yun, Jong-Chan;Kim, Hak-Chul;Kim, Jong-Jin;Youn, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.875-885
    • /
    • 2010
  • CBR (Case-Based Reasoning) is a technique to infer the relationships between existing data and case data, and the method to calculate similarity and Euclidean distance is mostly frequently being used. However, since those methods compare all the existing and case data, it also has a demerit that it takes much time for data search and filtering. Therefore, to solve this problem, various researches have been conducted. This paper suggests the method of SE(Speed Euclidean-distance) calculation that utilizes the patterns discovered in the existing process of computing similarity and Euclidean distance. Because SE calculation applies the patterns and weight found during inputting new cases and enables fast data extraction and short operation time, it can enhance computing speed for temporal or spatial restrictions and eliminate unnecessary computing operation. Through this experiment, it has been found that the proposed method improves performance in various computer environments or processing rate more efficiently than the existing method that extracts data using similarity or Euclidean method does.

A Study on Salt & Pepper Noise Removal using the Pixel Distribution of Local Mask (국부 마스크의 화소 분포를 이용한 Salt & Pepper 잡음 제거에 관한 연구)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2167-2172
    • /
    • 2015
  • Due to the recent progress in information technology, demand for video imaging devices such as displays has grown. In general, images experience deterioration during the process of transmission due to various reasons. Many studies have boon undertaken on ways o reduce such noise. This paper6 suggests an algorithm that makes a judgment on the noise in order to remove the salt & pepper noise and replaces original pixels if they are non-noise while processing noise according to its density. The suggested algorithm shows a high PSNR of 30.49[dB] for Goldhill images that had been damaged of a high density salt & pepper noise(P = 60%), Compared to the exising CWMF, SWMF, and A-TMF, there were improvements by 17.74[dB], 11.52[dB], and 13.76[dB], respectively.

Image Retrieval using Distribution Block Signature of Main Colors' Set and Performance Boosting via Relevance feedback (주요 색상의 분포 블록기호를 이용한 영상검색과 유사도 피드백을 통한 이미지 검색)

  • 박한수;유헌우;장동식
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.126-136
    • /
    • 2004
  • This paper proposes a new content-based image retrieval algorithm using color-spatial information. For the purpose, the paper suggests two kinds of indexing key to prune away irrelevant images to a given query image; MCS(Main Colors' Set), which is related with color information and DBS (Distribution Block Signature), which is related with spatial information. After successively applying these filters to a database, we could get a small amount of high potential candidates that are somewhat similar to the query image. Then we would make use of new QM(Quad modeling) and relevance feedback mechanism to obtain more accurate retrieval. It would enhance the retrieval effectiveness by dynamically modulating the weights of color-spatial information. Experiments show that the proposed algorithm can apply successfully image retrieval applications.

LiDAR Ground Classification Enhancement Based on Weighted Gradient Kernel (가중 경사 커널 기반 LiDAR 미추출 지형 분류 개선)

  • Lee, Ho-Young;An, Seung-Man;Kim, Sung-Su;Sung, Hyo-Hyun;Kim, Chang-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • The purpose of LiDAR ground classification is to archive both goals which are acquiring confident ground points with high precision and describing ground shape in detail. In spite of many studies about developing optimized algorithms to kick out this, it is very difficult to classify ground points and describing ground shape by airborne LiDAR data. Especially it is more difficult in a dense forested area like Korea. Principle misclassification was mainly caused by complex forest canopy hierarchy in Korea and relatively coarse LiDAR points density for ground classification. Unfortunately, a lot of LiDAR surveying performed in summer in South Korea. And by that reason, schematic LiDAR points distribution is very different from those of Europe. So, this study propose enhanced ground classification method considering Korean land cover characteristics. Firstly, this study designate highly confident candidated LiDAR points as a first ground points which is acquired by using big roller classification algorithm. Secondly, this study applied weighted gradient kernel(WGK) algorithm to find and include highly expected ground points from the remained candidate points. This study methods is very useful for reconstruct deformed terrain due to misclassification results by detecting and include important terrain model key points for describing ground shape at site. Especially in the case of deformed bank side of river area, this study showed highly enhanced classification and reconstruction results by using WGK algorithm.