Journal of the Korean Data and Information Science Society
/
v.27
no.5
/
pp.1133-1146
/
2016
Counts or averages over arbitrary regions are often analyzed using conditionally autoregressive (CAR) models. The spatial neighborhoods within CAR model are generally formed using only the inter-distance or boundaries between the sub-regions. Kyung and Ghosh (2009) proposed a new class of models to accommodate spatial variations that may depend on directions, using different weights given to neighbors in different directions. The proposed model, directional conditionally autoregressive (DCAR) model, generalized the usual CAR model by accounting for spatial anisotropy. Bayesian inference method is discussed based on efficient Markov chain Monte Carlo (MCMC) sampling of the posterior distributions of the parameters. The method is illustrated using a data set of median property prices across Greater Glasgow, Scotland, in 2008.
To analyze lattice or areal data, a conditionally autoregressive (CAR) model has been widely used in the eld of spatial analysis. The spatial neighborhoods within CAR model are generally formed using only inter-distance or boundaries between regions. Kyung and Ghosh (2010) proposed a new class of models to accommodate spatial variations that may depend on directions. The proposed model, a directional conditionally autoregressive (DCAR) model, generalized the usual CAR model by accounting for spatial anisotropy. Properties of maximum likelihood estimators of a Gaussian DCAR are discussed. The method is illustrated using a data set of median property prices across Greater Glasgow, Scotland, in 2008.
KSCE Journal of Civil and Environmental Engineering Research
/
v.36
no.4
/
pp.723-733
/
2016
This study aims to analyze the effects of urban characteristics on the amount of damage caused by natural disasters. It is focused on the areas of a municipal level in Korea. Also, it takes into account the spatial autocorrelation of the damage caused by natural disasters. Moran's I statistics was estimated to examine the spatial autocorrelation in the damage from the study area. Subsequent to evaluating the suitability for spatial regression models and the OLS regression model, the spatial lag model was employed as an empirical analysis for the study. It showed that the increase in residential area leads to the decrease in the amount of natural disaster damage. On the other hand, the increase in green area and river basin is associated with the increase in the damage. As a result of empirical analysis, appropriate policy establishment and implementation about the damage-adding factors is needed in order to reduce the amount of damage in the future.
Spatial data is collected on a regular Cartesian lattice. In this paper we consider the model indentification of spatial autoregressive(SAR) models using AIC, BIC, pattern method. The proposed methods are considered as an application of AIC, BIC, 3-patterns for SAR models through three directions; row, column and diagonal directions. Using the Monte Carlo simulation, we test the efficiency of the proposed methods for various SAR models.
This study, as the temporal and spatial data for the real price apartment in Seoul from January 2006 to June 2013, empirically compared and analyzed the estimation result of apartment price using OLS by hedonic price model for the problem of space-time correlation, temporal autoregressive model (TAR) considering temporal effect, spatial autoregressive model (SAR) spatial effect and spatiotemporal autoregressive model (STAR) spatiotemporal effect. As a result, the adjusted R-square of STAR model was increased by 10% compared that of OLS model while the root mean squares error (RMSE) was decreased by 18%. Considering temporal and spatial effect, it is observed that the estimation of apartment price is more correct than the existing model. As the result of analyzing STAR model, the apartment price is affected as follows; area for apartment(-), years of apartment(-), dummy of low-rise(-), individual heating (-), city gas(-), dummy of reconstruction(+), stairs(+), size of complex(+). The results of other analysis method were the same. When estimating the price of real estate using STAR model, the government officials can improve policy efficiency and make reasonable investment based on the objective information by grasping trend of real estate market accurately.
The purpose of this paper is to visualize the housing market dynamics with ESDA (Exploratory Spatial Data Analysis) using MATLAB toolbox, in terms of the modeling housing market dynamics in the Busan Metropolitan City. The data are used the real housing price transaction records in Busan from the first quarter of 2006 to the second quarter of 2009. Hedonic house price model, which is not reflecting spatial autocorrelation, has been a powerful tool in understanding housing market dynamics in urban housing economics. This study considers spatial autocorrelation in order to improve the traditional hedonic model which is based on OLS(Ordinary Least Squares) method. The study is, also, investigated the comparison in terms of $R^2$, Sigma Square(${\sigma}^2$), Likelihood(LR) among spatial econometrics models such as SAR(Spatial Autoregressive Models), SEM(Spatial Errors Models), and SAC(General Spatial Models). The major finding of the study is that the SAR, SEM, SAC are far better than the traditional OLS model, considering the various indicators. In addition, the SEM and the SAC are superior to the SAR.
Population data has been essential and fundamental in spatial analysis and commonly aggregated into political boundaries. A conventional method for population distribution estimation was a regression model with land use data, but the estimation process has limitation because of spatial autocorrelation of the population data. This study aimed to improve the accuracy of population distribution estimation by adopting a Regression-Kriging method, namely RK Model, which combines a regression model with Kriging for the residuals. RK Model was applied to a part of Seoul metropolitan area to estimate population distribution based on the residential zones. Comparative results of regression model and RK model using RMSE, MAE, and G statistics revealed that RK model could substantially improve the accuracy of population distribution. It is expected that RK model could be adopted actively for further population distribution estimation.
In sample survey sample designs are performed by geographically-based domain such as countries, states and metropolitan areas. However mostly statistics of interests are smaller domain than sample designed domain. Then sample sizes are typically small or even zero within the domain of interest. Shin and Lee(2003) mentioned Spatial Autoregressive(SAR) model in small area estimation model-based method and show the effectiveness by MSE. In this study, Bayesian Auto-Poisson Model is applied in model-based small area estimation method and compare the results with SAR model using MSE ME and bias check diagnosis using regression line. In this paper Survey of Disability, Aging and Cares(SDAC) data are used for simulation studies.
본 연구는 지리정보시스템(GIS)과 지리적 가중 회귀(GWR)를 이용하여 건강 관련 삶의 질(HRQoL)의 사회인구학적 상관요인에 대한 공간분석을 시도한다. 관찰의 독립성과 오차의 동분산성을 가정하는 전통적 회귀분석과 달리, 지리적 가중 회귀분석은 속성정보뿐만 아니라 공간정보를 활용하는 공간분석 기법이다. 분석모형은 건강 관련 삶의 질을 종합적으로 측정하는 EQ-5D를 종속변수로 하고 지역의 사회인구학적 특성인 노령인구비율, 조이혼율, 병상수, 재정자주도를 독립변수로 하여 구성하였다. 종속변수는 질병관리본부에서 실시한 <지역사회건강조사>의 자료를 이용하였고, 독립변수는 통계청 온라인 DB에 수록된 지역별 자료를 이용하였다. 모형을 추정해 본 결과 전반적으로 사회적 특성보다는 노령인구비율이나 조이혼율과 같은 인구학적 특성이 건강 관련 삶의 질에 더 많은 영향을 미치는 것으로 나타났다. 공간적 변이를 고려하는 지역모형은 전역모형에서 드러나지 않았던 중요한 유형을 보여주는데, 노령인구비율 변수와 조이혼율 변수의 지역별 추정치를 지도상으로 살펴본 결과 변수들의 효과가 공간적 위치에 따라 차이를 보인다는 점이 확인되었다. 분석 결과는 또한 지리적 가중 회귀분석이 전통적 회귀분석에 비해 공간적 자기상관의 문제를 극복하고 모형의 부합도를 증가시킨다는 것을 보여준다.
Communications for Statistical Applications and Methods
/
v.16
no.2
/
pp.265-275
/
2009
This paper considers a linear regression model with a spatial autoregressive disturbance with ill-posed data and proposes the generalized maximum entropy(GME) estimator of regression coefficients. The performance of this estimator is investigated via Monte Carlo experiments. The results show that the GME estimator provides efficient and robust estimate for the unknown parameter.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.