• Title/Summary/Keyword: 공간자기회귀모형

Search Result 60, Processing Time 0.02 seconds

Bayesian analysis of directional conditionally autoregressive models (방향성 공간적 조건부 자기회귀 모형의 베이즈 분석 방법)

  • Kyung, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1133-1146
    • /
    • 2016
  • Counts or averages over arbitrary regions are often analyzed using conditionally autoregressive (CAR) models. The spatial neighborhoods within CAR model are generally formed using only the inter-distance or boundaries between the sub-regions. Kyung and Ghosh (2009) proposed a new class of models to accommodate spatial variations that may depend on directions, using different weights given to neighbors in different directions. The proposed model, directional conditionally autoregressive (DCAR) model, generalized the usual CAR model by accounting for spatial anisotropy. Bayesian inference method is discussed based on efficient Markov chain Monte Carlo (MCMC) sampling of the posterior distributions of the parameters. The method is illustrated using a data set of median property prices across Greater Glasgow, Scotland, in 2008.

Directional conditionally autoregressive models (방향성을 고려한 공간적 조건부 자기회귀 모형)

  • Kyung, Minjung
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.835-847
    • /
    • 2016
  • To analyze lattice or areal data, a conditionally autoregressive (CAR) model has been widely used in the eld of spatial analysis. The spatial neighborhoods within CAR model are generally formed using only inter-distance or boundaries between regions. Kyung and Ghosh (2010) proposed a new class of models to accommodate spatial variations that may depend on directions. The proposed model, a directional conditionally autoregressive (DCAR) model, generalized the usual CAR model by accounting for spatial anisotropy. Properties of maximum likelihood estimators of a Gaussian DCAR are discussed. The method is illustrated using a data set of median property prices across Greater Glasgow, Scotland, in 2008.

Estimation of the Natural Damage Disaster Considering the Spatial Autocorrelation and Urban Characteristics (공간적 자기상관성과 도시특성 요소를 고려한 자연재해 피해 분석)

  • Seo, Man Whoon;Lee, Jae Song;Choi, Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.723-733
    • /
    • 2016
  • This study aims to analyze the effects of urban characteristics on the amount of damage caused by natural disasters. It is focused on the areas of a municipal level in Korea. Also, it takes into account the spatial autocorrelation of the damage caused by natural disasters. Moran's I statistics was estimated to examine the spatial autocorrelation in the damage from the study area. Subsequent to evaluating the suitability for spatial regression models and the OLS regression model, the spatial lag model was employed as an empirical analysis for the study. It showed that the increase in residential area leads to the decrease in the amount of natural disaster damage. On the other hand, the increase in green area and river basin is associated with the increase in the damage. As a result of empirical analysis, appropriate policy establishment and implementation about the damage-adding factors is needed in order to reduce the amount of damage in the future.

Model identification of spatial autoregressive data analysis (공간 자기회귀모형의 식별)

  • 손건태;백지선
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.1
    • /
    • pp.121-136
    • /
    • 1997
  • Spatial data is collected on a regular Cartesian lattice. In this paper we consider the model indentification of spatial autoregressive(SAR) models using AIC, BIC, pattern method. The proposed methods are considered as an application of AIC, BIC, 3-patterns for SAR models through three directions; row, column and diagonal directions. Using the Monte Carlo simulation, we test the efficiency of the proposed methods for various SAR models.

  • PDF

An Empirical Study on the Estimation of Housing Sales Price using Spatiotemporal Autoregressive Model (시공간자기회귀(STAR)모형을 이용한 부동산 가격 추정에 관한 연구)

  • Chun, Hae Jung;Park, Heon Soo
    • Korea Real Estate Review
    • /
    • v.24 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • This study, as the temporal and spatial data for the real price apartment in Seoul from January 2006 to June 2013, empirically compared and analyzed the estimation result of apartment price using OLS by hedonic price model for the problem of space-time correlation, temporal autoregressive model (TAR) considering temporal effect, spatial autoregressive model (SAR) spatial effect and spatiotemporal autoregressive model (STAR) spatiotemporal effect. As a result, the adjusted R-square of STAR model was increased by 10% compared that of OLS model while the root mean squares error (RMSE) was decreased by 18%. Considering temporal and spatial effect, it is observed that the estimation of apartment price is more correct than the existing model. As the result of analyzing STAR model, the apartment price is affected as follows; area for apartment(-), years of apartment(-), dummy of low-rise(-), individual heating (-), city gas(-), dummy of reconstruction(+), stairs(+), size of complex(+). The results of other analysis method were the same. When estimating the price of real estate using STAR model, the government officials can improve policy efficiency and make reasonable investment based on the objective information by grasping trend of real estate market accurately.

Busan Housing Market Dynamics Analysis with ESDA using MATLAB Application (공간적탐색기법을 이용한 부산 주택시장 다이나믹스 분석)

  • Chung, Kyoun-Sup
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.2
    • /
    • pp.461-471
    • /
    • 2012
  • The purpose of this paper is to visualize the housing market dynamics with ESDA (Exploratory Spatial Data Analysis) using MATLAB toolbox, in terms of the modeling housing market dynamics in the Busan Metropolitan City. The data are used the real housing price transaction records in Busan from the first quarter of 2006 to the second quarter of 2009. Hedonic house price model, which is not reflecting spatial autocorrelation, has been a powerful tool in understanding housing market dynamics in urban housing economics. This study considers spatial autocorrelation in order to improve the traditional hedonic model which is based on OLS(Ordinary Least Squares) method. The study is, also, investigated the comparison in terms of $R^2$, Sigma Square(${\sigma}^2$), Likelihood(LR) among spatial econometrics models such as SAR(Spatial Autoregressive Models), SEM(Spatial Errors Models), and SAC(General Spatial Models). The major finding of the study is that the SAR, SEM, SAC are far better than the traditional OLS model, considering the various indicators. In addition, the SEM and the SAC are superior to the SAR.

Population Distribution Estimation Using Regression-Kriging Model (Regression-Kriging 모형을 이용한 인구분포 추정에 관한 연구)

  • Kim, Byeong-Sun;Ku, Cha-Yong;Choi, Jin-Mu
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.6
    • /
    • pp.806-819
    • /
    • 2010
  • Population data has been essential and fundamental in spatial analysis and commonly aggregated into political boundaries. A conventional method for population distribution estimation was a regression model with land use data, but the estimation process has limitation because of spatial autocorrelation of the population data. This study aimed to improve the accuracy of population distribution estimation by adopting a Regression-Kriging method, namely RK Model, which combines a regression model with Kriging for the residuals. RK Model was applied to a part of Seoul metropolitan area to estimate population distribution based on the residential zones. Comparative results of regression model and RK model using RMSE, MAE, and G statistics revealed that RK model could substantially improve the accuracy of population distribution. It is expected that RK model could be adopted actively for further population distribution estimation.

Small Area Estimation Using Bayesian Auto Poisson Model with Spatial Statistics (공간통계량을 활용한 베이지안 자기 포아송 모형을 이용한 소지역 통계)

  • Lee, Sang-Eun
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.421-430
    • /
    • 2006
  • In sample survey sample designs are performed by geographically-based domain such as countries, states and metropolitan areas. However mostly statistics of interests are smaller domain than sample designed domain. Then sample sizes are typically small or even zero within the domain of interest. Shin and Lee(2003) mentioned Spatial Autoregressive(SAR) model in small area estimation model-based method and show the effectiveness by MSE. In this study, Bayesian Auto-Poisson Model is applied in model-based small area estimation method and compare the results with SAR model using MSE ME and bias check diagnosis using regression line. In this paper Survey of Disability, Aging and Cares(SDAC) data are used for simulation studies.

건강 관련 삶의 질의 사회인구학적 상관요인에 대한 공간분석

  • Jo, Dong-Gi
    • Korea journal of population studies
    • /
    • v.32 no.3
    • /
    • pp.1-20
    • /
    • 2009
  • 본 연구는 지리정보시스템(GIS)과 지리적 가중 회귀(GWR)를 이용하여 건강 관련 삶의 질(HRQoL)의 사회인구학적 상관요인에 대한 공간분석을 시도한다. 관찰의 독립성과 오차의 동분산성을 가정하는 전통적 회귀분석과 달리, 지리적 가중 회귀분석은 속성정보뿐만 아니라 공간정보를 활용하는 공간분석 기법이다. 분석모형은 건강 관련 삶의 질을 종합적으로 측정하는 EQ-5D를 종속변수로 하고 지역의 사회인구학적 특성인 노령인구비율, 조이혼율, 병상수, 재정자주도를 독립변수로 하여 구성하였다. 종속변수는 질병관리본부에서 실시한 <지역사회건강조사>의 자료를 이용하였고, 독립변수는 통계청 온라인 DB에 수록된 지역별 자료를 이용하였다. 모형을 추정해 본 결과 전반적으로 사회적 특성보다는 노령인구비율이나 조이혼율과 같은 인구학적 특성이 건강 관련 삶의 질에 더 많은 영향을 미치는 것으로 나타났다. 공간적 변이를 고려하는 지역모형은 전역모형에서 드러나지 않았던 중요한 유형을 보여주는데, 노령인구비율 변수와 조이혼율 변수의 지역별 추정치를 지도상으로 살펴본 결과 변수들의 효과가 공간적 위치에 따라 차이를 보인다는 점이 확인되었다. 분석 결과는 또한 지리적 가중 회귀분석이 전통적 회귀분석에 비해 공간적 자기상관의 문제를 극복하고 모형의 부합도를 증가시킨다는 것을 보여준다.

Generalized Maximum Entropy Estimator for the Linear Regression Model with a Spatial Autoregressive Disturbance (오차항이 SAR(1)을 따르는 공간선형회귀모형에서 일반화 최대엔트로피 추정량에 관한 연구)

  • Cheon, Soo-Young;Lim, Seong-Seop
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.265-275
    • /
    • 2009
  • This paper considers a linear regression model with a spatial autoregressive disturbance with ill-posed data and proposes the generalized maximum entropy(GME) estimator of regression coefficients. The performance of this estimator is investigated via Monte Carlo experiments. The results show that the GME estimator provides efficient and robust estimate for the unknown parameter.