Kim, Su-Jung;Choi, Seung-Bae;Kang, Chang-Wan;Cho, Jang-Sik
Communications for Statistical Applications and Methods
/
v.17
no.2
/
pp.193-204
/
2010
Recently, researchers of the various fields where the spatial analysis is needed have more interested in spatial statistics. In case of data with spatial correlation, methodologies accounting for the correlation are required and there have been developments in methods for spatial data analysis. Lattice data among spatial data is analyzed with following three procedures: (1) definition of the spatial neighborhood, (2) definition of spatial weight, and (3) the analysis using spatial models. The present paper shows a spatial statistical analysis method superior to a general statistical method in aspect estimation by using the trimmed mean squared error statistic, when we analysis the spatial lattice data that outliers are included. To show validation and usefulness of contents in this paper, we perform a small simulation study and show an empirical example with a criminal data in BusanJin-Gu, Korea.
객체기반 영상분류를 위한 영상분할에 있어서 중요한 요소로는 분할축척(Scale), 분광 정보(Color), 공간 정보(Shape) 등이 있으며 공간 정보에 해당하는 공간 변수는 평활도(Smoothness)와 조밀도(Compactness)가 있다. 이들 가중치의 선택이 최종적으로 객체기반 영상분류의 결과를 좌우하게 된다. 본 연구는 객체기반 영상분류의 준비 과정이라 할 수 있는 영상분할에 있어서 다양한 가중치를 적용을 통하여 영상을 분할하였다. 영상분할을 위해 적용한 가중치는 10, 20, 30의 분할축척(Scale)과 분광 정보(Color)와 공간 정보(Shape)간의 가중치 조합, 공간 변수인 평활도(Smoothness)와 조밀도(Compactness)간의 가중치 조합을 사용하였다. 각 가중치 조합을 통하여 분할된 영상의 분석은 Moran's I 와 객체 내부 분산(Intrasegment Variance)을 이용하여 분석하였다. 각 객체간의 상관관계 분석을 위하여 Moran's I를 계산하였으며 분류된 지역의 동질성을 분석하기 위하여 객체 면적을 고려한 객체 내부 분산(Intrasegment Variance)값을 계산하였다. Moran's I 가 낮은 값을 가질수록 객체 간의 공간상관관계가 낮아지므로 이웃 객체간의 이질성은 높아지며 객체 내부 분산(Intrasegment Variance)이 낮은 값을 가질수록 지역간의 동질성은 높아지게 된다. Moran's I 와 객체 내부 분산(Intrasegment Variance)의 조합을 통하여 객체기반 영상분류 시 가장 높은 분류 정확도가 예상되는 밴드별 영상분할 가중치를 얻을 수 있다.
Recently many researches on data analysis using spatial statistics have been studied in various field and the studies on small area estimations using spatial statistics are in actively progress. In analysis of lattice data, defining the neighborhood information system is the most crucial procedure because it also determines the result of the analysis. However the used neighborhood informal ion system is generally defined by sharing the common border lines of small areas. In this paper the other neighborhood information systems are introduced and those systems are compared with Moran's I statistic and for the comparisons, Economic Active Population Survey (2001) is used.
Proceedings of the Korean Society of Computer Information Conference
/
2011.01a
/
pp.39-42
/
2011
본 논문에서는 영상들의 특징들을 추출하여 특징 값들의 비교를 통하여 질의 영상의 유사 영상을 검색하는 방법을 제안한다. 제안하는 방법은 입력 영상들의 색상 히스토그램으로 색상 특징 값들을 추출하고 질감 정보인 에지 정보와 이웃화소간의 공간 관계를 분석하여 질감 특징 값들을 추출하여 저장한 후 질의 이미지의 색상과 질감 특징들을 구하여 비교를 통하여 유사도를 분석하고 결과 영상을 보여준다. 또한 색상과 질감을 혼합하여 사용할 때 적응적으로 가중치를 부여함으로써 가중치가 적합하지 않아 발생하는 오 검출될 현상을 피할 수 있게 되었다. 실험을 통하여 기존의 방법과의 성능을 비교분석하였고 본 방법의 우수성을 입증하였다.
인간은 초점정보를 이용하여 단안만으로도 공간의 깊이를 지각할 수 있다. 이것은 한 번에 하나의 대상물에만 초점을 맞출 수 있고 그 외의 부분은 흐림 현상을 유도함으로써 이루어진다. 이는 초점이 맞는 대상물체로부터 멀어지면 멀어질수록 흐림 현상이 강해지는 원리를 이용한 것으로 주파수 성분의 변화량에 대한 연산과 깊은 관련이 있다. 본 논문에서는 이와 같은 인간의 시각 시스템의 요소 중 하나인 초점정보를 모방하여 초점거리가 다른 각각의 이미지들에 각각의 가중치를 부여하였다. 그리고 각 이미지들을 일정 블록으로 각각 분할하여 초점이 가장 잘 맞는 블록을 찾아내어 하나의 이미지로 통합하였다. 이때 각 영역은 자신이 속했던 이미지의 가중치를 따르게 한다. 각 이미지에서 가장 포커스 수치가 높은 영역을 찾기 위한 방법으로 주파수 영역 기반 처리와 공간 영역 기반 처리를 결합 하였다. 주파수 기반으로는 FFT(Fast Fourier Transform)에서 고주파 부분의 영역을 뽑아내어 포커스수치를 계산하였으며, 공간 영역 처리 기반으로는 이웃픽셀과의 차이가 임계값이하인 것을 제외한 영역을 뽑아내어 저주파 영역의 연산을 제거하는 방법과 단순히 Laplacian measure만을 사용하여 저주파까지도 포함한 방법의 두 가지를 적용하였다. 최종적으로 3개의 포커스 측정값을 결합시켜 포커스 수치를 계산한 후 각 블록의 가중치에 맞게 하나의 이미지로 통합하여 상대적 깊이지도를 생성하였다.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.43
no.4
s.310
/
pp.1-8
/
2006
This paper proposes an improved FCM(Fuzzy C-means) algorithm using intercluster and entropy-based weight in gray image. The fuzzy clustering methods have been extensively used in the image segmentation since it extracts feature information of the region. Most of fuzzy clustering methods have used the FCM algorithm. But, FCM algorithm is still sensitive to noise, as it does not include spatial information. In addition, it can't correctly classify pixels according to the feature-based distributions of clusters. To solve these problems, we applied a weight and intercluster to the traditional FCM algorithm. A weight is obtained from the entropy information based on the cluster's number of neighboring pixels. And a membership for one pixel is given based on the information considering the feature-based intercluster. Experiments has confirmed that the proposed method was more tolerant to noise and superior to existing methods.
본 논문에서는 대역 제한된 색도 신호에 의해 발생하는 컬러번짐 현상을 TV 수신단이나 MPEG 디코더에서 효과적으로 개선하는 방법을 제시한다. 제안하는 컬러 번짐 개선 알고리즘은 비디오 신호에 포함된 색도 신호의 천이를 개선하기 위하여, 색도 신호의 일정 윈도우 영역에 존재하는 주변 화소들의 국부 최대값 및 국부 최소값을 바탕으로 얻어낸 계단 신호를 사용한다. 대역 제한된 색도 신호에서 이웃에 존재하는 화소들간의 색도 차를 계산하여 에지 특성을 분석하고 계산된 색도 차를 바탕으로 입력 신호와 계단신호와의 공간 적응적 가중치를 결정한다. 실험 결과에서는 제안하는 컬러 번짐 개선 알고리즘이 컬러 번짐 효과를 효과적으로 제거하여 선명하면서도 자연스러운 영상을 얻어내는 것을 확인할 수 있다.
Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.125-127
/
2000
협력적 여과는 사용자의 아이템에 대한 단계적 평가에 기초하여 그 평가 패턴이 유사한 사용자를 찾아 그 사용자들이 선호한 아이템을 상대방에게 교차 추천을 해주는 방법이다. 따라서, 유사한 사용자를 찾는 방법이 중요한 문제가 되며, 현재까지 여러 가지 방법들이 제안되어 왔다. 순수한 협력적 여과 방법은 n차원 공간에서 사용자를 모델링하여 가장 유사한 이웃을 찾는다. 이러한 모델링의 문제점은 사용자가 평가한 아이템의 집합은 전체 아이템의 집합에 비해서 극히 작으므로 유사한 사용자를 찾기 위해서는 충분한 수의 아이템에 대해서 평가해야 한다는 것이다. 따라서, 본 논문에서는 유사란 사용자를 찾기 위해서 충분한 수의 평가를 요구하는 명백하게 사용자의 평가를 비교하는 것 대신에 특징 가중치에 초하여 사용자를 비교하는 방법을 사용하고 사용하는 방법의 정확성을 높일 수 있는 임계값을 제안하고자 한다.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.46
no.5
/
pp.143-150
/
2009
In this paper, we present a spatial domain error concealment method to recover a lost block in intra-coded frames. The edge directions of the lost block are estimated by the difference values of the border pixels of the accurately received blocks. The lost block is interpolated according to the estimated edge directions. Our algorithm can adaptively recover a lost block according to the estimated edge direction. The distances between pixels are used as weights for interpolation. In spite of the low computational cost, the proposed method outperforms the previous methods in objective and subjective qualities.
For real-time recognizing of model objects in remote position a new Neural Networks algorithm is proposed. The proposed neural networks technique is the real time computation methods through the inter-node diffusion. In the networks, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. The most reliable algorithm derived for real time recognition of objects, is a dynamic programming based algorithm based on sequence matching techniques that would process the data as it arrives and could therefore provide continuously updated neighbor information estimates. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed. 1-D LIPN hardware has been composed and various experiments with static and dynamic signals have been implemented.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.