• Title/Summary/Keyword: 공간시험

Search Result 1,532, Processing Time 0.024 seconds

Impact Sensitivity and Friction Sensitivity of HTPB Based Propellant According to the Aluminum Content (HTPB 계열 추진제의 알루미늄 함량에 따른 충격감도 및 마찰감도 연구)

  • Kim, Kahee;Park, Jung-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.60-65
    • /
    • 2021
  • In this paper, we examined the ignition possibility of the propellant depending on its non-uniform composition of aluminum. Impact and friction sensitivity was investigated by arbitrarily changing the aluminum content in the range of 14~20% to simulate the non-uniform distribution of aluminum in the propellant. As a result of measuring the impact sensitivity, the 50% ignition energy and minimum ignition energy have values around 50 J regardless of the aluminum content. This means that the propellant does not become sensitive to impact even if the aluminum content is increased. On the other hand, the friction sensitivity result shows that as the aluminum content increases, the 50% ignition force and minimum ignition forces were decreased, and thus the propellant becomes sensitive. "Hot Spot" model of propellant ignition is applied, the space inside the propellant is momentarily compressed and ignited by friction stimuli rather than by impact stimuli.

Short-Term Crack in Sewer Forecasting Method Based on CNN-LSTM Hybrid Neural Network Model (CNN-LSTM 합성모델에 의한 하수관거 균열 예측모델)

  • Jang, Seung-Ju;Jang, Seung-Yup
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.11-19
    • /
    • 2022
  • In this paper, we propose a GoogleNet transfer learning and CNN-LSTM combination method to improve the time-series prediction performance for crack detection using crack data captured inside the sewer pipes. LSTM can solve the long-term dependency problem of CNN, so spatial and temporal characteristics can be considered at the same time. The predictive performance of the proposed method is excellent in all test variables as a result of comparing the RMSE(Root Mean Square Error) for time series sections using the crack data inside the sewer pipe. In addition, as a result of examining the prediction performance at the time of data generation, the proposed method was verified that it is effective in predicting crack detection by comparing with the existing CNN-only model. If the proposed method and experimental results obtained through this study are utilized, it can be applied in various fields such as the environment and humanities where time series data occurs frequently as well as crack data of concrete structures.

Deep Learning-Based Spatio-Temporal Earthquake Prediction (딥러닝 기반의 시공간 지진 예측)

  • Kounghoon Nam;Jong-Tae Kim;Seong-Cheol Park;Chang Ju Lee;Soo-Jin Kim;Chang Oh Choo;Gyo-Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Predicting earthquakes is difficult due to the complexity of the systems underlying tectonic phenomena and incomplete understanding of the interactions among tectonic settings, tectonic stress, and crustal components. The Korean Peninsula is located in a stable intraplate region with a low average seismicity of M 2.3. As public interest in the earthquake grows, we analyzed earthquakes on the Korean Peninsula by attempting to predict spatio-temporal earthquake patterns and magnitudes using Facebook's Prophet model based on deep learning, and here we discuss seismic distribution zones using DBSCAN, a cluster analysis method. The Prophet model predicts future earthquakes in Chungcheongbuk-do, Gyeonggi-do, Seoul, and Gyeongsangbuk-do.

The Effect of Remedial Works to Control the Leakage Problem in Earth Fill Dam by Compaction Grouting (콤팩션 그라우팅에 의한 흙댐의 누수복원 공사효과 분석)

  • Chun, Byung-Sik;Lee, Yong-Jae;Chung, Ha-Ik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.13-23
    • /
    • 2006
  • The sinkhole and leakage in dam core were detected at one of earth fill dams in Korea. The damage areas in the core of the dam were repaired by compaction grouting method. This study is to evaluate compaction grouting activity by in-situ and laboratory experiments before, during and after the remedial work. The intensive site investigation and geophysical survey were conducted during and after the compaction grouting work. The compaction grouting work was carried out for the damaged dam core between June 16 and August 24, 2000. The leakage reduction generally occurred in the core of the dam after the remedial work. The use of compaction grouting was considered the proper countermeasures for repairing the damaged dam. It shows that the loose or voided zones have been properly filled and the leakage has been reduced by about 96% of that before the treatment of the remedial work performed at dam core by compaction grouting.

Distance Measurement Method using Deviation Due to Infrared Spectral Reflectance (적외선 분광 반사율에 의한 편차를 활용한 거리 측정 방법)

  • Mo, Gwi-hwan;Yang, Jae-hyeok;Kim, Su-min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.262-265
    • /
    • 2021
  • The purpose of this development is to prevent accidents in the telephone poles caused by bird nests in advance. It is a sensor node installed on a telephone pole to recognize a bird's nest. This is to remove the bird before it builds a nest and lays eggs. It is in the system that recognizes the bird nest by the change of the distance when the sensor is first installed and the distance value measured thereafter. In this paper, we have designed and tested infrared rays with concrete, iron plate, wood, and plastic bag are targeted. This is an object that can be detected within a telephone pole was tested. The value of the spectrum detected by the spectral reflectance was obtained through a photodiode. Through the standard deviation graph of these values, it became possible to predict the target of the object and measure the distance. As a result of this experiment, target information (concrete, iron plate, wood, plastic bag) about dangerous substances in the telephone pole was acquired through the infrared sensor. Through this, it is expected that it will contribute to the establishment of a safe power grid and a coexistence environment with nature through power grid monitoring.

  • PDF

Walking path design considering with Slope for Mountain Terrain Open space

  • Seul-ki Kang;Ju-won Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.103-111
    • /
    • 2023
  • Mountains area, especially walking in open space is important for special active field which is based on mountain terrain. Recent research on pedestrian-path includes elements about pedestrian and various environment by analyzing network, but it is mainly focusing on limited space except for data-poor terrain like a mountain terrain. This paper proposes an architecture to generate walking path considering the slope for mountain terrain open space through virtual network made of mesh. This architecture shows that it reflects real terrain more effective when measuring distance using slope and is possible to generate mountain walking path using open space unlike other existing services, and is verified through the test. The proposed architecture is expected to utilize for pedestrian-path generation way considering mountain terrain open space in case of distress, mountain rescue and tactical training and so on.

A Study on the Applicability of Machine Learning Algorithms for Detecting Hydraulic Outliers in a Borehole (시추공 수리 이상점 탐지를 위한 기계학습 알고리즘의 적용성 연구)

  • Seungbeom Choi; Kyung-Woo Park;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.561-573
    • /
    • 2023
  • Korea Atomic Energy Research Institute (KAERI) constructed the KURT (KAERI Underground Research Tunnel) to analyze the hydrogeological/geochemical characteristics of deep rock mass. Numerous boreholes have been drilled to conduct various field tests. The selection of suitable investigation intervals within a borehole is of great importance. When objectives are centered around hydraulic flow and groundwater sampling, intervals with sufficient groundwater flow are the most suitable. This study defines such points as hydraulic outliers and aimed to detect them using borehole geophysical logging data (temperature and EC) from a 1 km depth borehole. For systematic and efficient outlier detection, machine learning algorithms, such as DBSCAN, OCSVM, kNN, and isolation forest, were applied and their applicability was assessed. Following data preprocessing and algorithm optimization, the four algorithms detected 55, 12, 52, and 68 outliers, respectively. Though this study confirms applicability of the machine learning algorithms, it is suggested that further verification and supplements are desirable since the input data were relatively limited.

Development and Performance Evaluation of Real-Time Wear Measurement System of TBM Disc Cutter (TBM 디스크 커터 실시간 마모계측 시스템 개발 및 성능검증)

  • Min-Seok Ju;Min-Sung Park;Jung-Joo Kim;Seung Woo Song;Seung Chul Do;Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.154-168
    • /
    • 2024
  • The Tunnel Boring Machine (TBM) disc cutter is subjected to wear and damage during the rock excavation process, and the worn disc cutter should be replaced on time. The manual inspection by workers is generally required to determine the disc cutter replacement. In this case, the workers are exposed to dangerous environments, and the measurements are sometimes inaccurate. In this study, we developed a technology that measures the disc cutter wear in real time. From a series of laboratory tests, a magnetic sensor was selected as the wear sensor, and the real-time disc cutter measurement system was developed integrating wireless communication modules, power supply and data processing board. In addition, the measurement system was verified in actual TBM excavation circumstances. As a result, it was confirmed that the accuracy and stability of the system.

A Preliminary Study on the Reused Channel-Type Lining Board with Corrosion-Damage (부식 강재 복공판의 재사용성 평가에 관한 기초적 연구)

  • Kim, In-Tae;Kim, Dong-Woo;Choi, Hyoung-Suk;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.4 s.56
    • /
    • pp.170-179
    • /
    • 2009
  • Channel-type lining board(CLB) is a welded steel structure used in the field of open cut subway excavation and building basement construction. Lining board is generally installed at the underground environment which is exposed to corrosion factors such as humidity, temperature and corrosive gases. This study evaluates reusability of the corroded lining board by experimental and analytical method. Static loading tests were performed to know serviceability of corroded CLB after checking thickness loss of the used CLB parts. Strain of the plates and middle point deflection was measured simultaneously. According to experimental test results and comparison with numerical analysis, the thickness loss of the plates by corrosion makes more vertical displacements and stresses in members under the DB vehicle load considering impact factor. As a result, this paper is proposed a way to evaluate used and corroded CLB by checking the plates thickness and it makes construction engineers easy to know optimal time to replace their old CLBs with new one.

Behavior of wall and nearby tunnel due to deformation of strut of braced wall using laboratory model test (실내모형시험을 통한 흙막이벽체 버팀대 변형에 따른 흙막이벽체 및 인접터널의 거동)

  • Ahn, Sung Joo;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.593-608
    • /
    • 2018
  • If a problem occurs in the strut during the construction of the braced wall, they may cause excessive deformation of the braced wall. Therefore, in this study, the behavior of the braced wall and existing tunnel adjacent to excavation were investigated assuming that the support function of strut is lost during construction process. For this purpose, a series of model test was performed. As a result of the study, the earth pressure in the ground behind wall was rearranged due to the deformation of the braced wall, and the ground displacements caused the deformation of adjacent tunnels. When the struts located on the nearest side wall from the tunnel were removed, the deformation of the braced wall and the tunnel deformation were the largest. The magnitude of transferred earth pressure depended on the location of tunnel. The increase of the cover depth of tunnel from 0.65D to 2.65D caused the increase of the earth pressure by 25.6%. As the distance between braced wall and tunnel was increased from 0.5D to 1.0D, the transferred earth pressure increased by 16% on average. Horizontal displacements of braced wall by the removal of the strut tended to concentrate around the removed struts, and the horizontal displacement increased as the strut removal position is lowered. The tunnel displacement was maximum, when the cover depth of tunnel was 1.15D and the horizontal distance between braced wall and the side of tunnel was 0.5D. The minimal displacement occurred, when the cover depth of tunnel was 2.65D and the horizontal distance between braced wall and the side of tunnel was 1.0D. The difference between the maximum displacement and the minimum displacement was about 2 times, and the displacement was considered to be the largest when it was in the range of 1.15D to 1.65D and the horizontal distance of 0.5D.