• Title/Summary/Keyword: 공간데이터분석

Search Result 2,697, Processing Time 0.033 seconds

Business Innovation Through Spatial Data Analysis: A Multi-Case Analysis (공간 데이터 분석 기반의 비즈니스의 혁신: 해외 사례 분석을 중심으로)

  • Ham, YuKun
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.83-97
    • /
    • 2019
  • With sensor and communication technology development, spatial data related to business activities is exploding. Spatial data is now evolving into atypical data about space over three dimensions, away from two-dimensional geographic data. In addition to the Fourth Industrial Revolution, which connects the virtual space with the real space, there is a great opportunity for companies to utilize it. The analysis of recent overseas cases shows that it is possible to analyze customized services by understanding the situation of customers and objects located in the space, to manage risk, and furthermore to innovate business processes by analyzing spatial data. In the future, business innovation that combines spatial data from various sources and real-time analysis of relationships and situations between people and objects in space is expected to expand in all business fields.

  • PDF

Comparative Analysis of 3D Spatial Data Models (3차원 공간정보 데이터 모델 비교 분석)

  • Park, Se-Ho;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.277-285
    • /
    • 2009
  • Each system should have a suitable data model about their purpose for efficiently managing, analyzing, and manipulating data. And the usable range of application is determined by the data model, and suitable data models are being developed for each application. In GIS, diversity spatial data model is being developed too. The accuracy and update of the spatial data would be important for applying efficient application as well as the data modeling is important as constructing the spatial data structure. Therefore, the purposes of this research are to 1)compare domestic spatial data models with oversea spatial data models about their geometry model, topology model and visualizing method of 3D spatial data 2)to compare the features of the data model by analyzing each data structures. We 3)compare and analyze features of each spatial data models via the quantitative analysis of each spatial data models.

  • PDF

Non-Duplication Loading Method for supporting Spatio-Temporal Analysis in Spatial Data Warehouse (공간 데이터웨어하우스에서 시공간 분석 지원을 위한 비중복 적재기법)

  • Jeon, Chi-Soo;Lee, Dong-Wook;You, Byeong-Seob;Lee, Soon-Jo;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.2
    • /
    • pp.81-91
    • /
    • 2007
  • In this paper, we have proposed the non-duplication loading method for supporting spatio-temporal analysis in spatial data warehouse. SDW(Spatial Data Warehouse) extracts spatial data from SDBMS that support various service of different machine. In proposed methods, it extracts updated parts of SDBMS that is participated to source in SDW. And it removes the duplicated data by spatial operation, then loads it by integrated forms. By this manner, it can support fast analysis operation for spatial data and reduce a waste of storage space. Proposed method loads spatial data by efficient form at application of analysis and prospect by time like spatial mining.

  • PDF

The Extended Cube Tree for Distribution Area Query Processing in Spatial Data Warehouses (공간 데이터 웨어하우스에서 분포 지역 질의 처리를 위한 확장된 큐브 트리 기법)

  • 최준호;유병섭;박순영;배해영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.76-78
    • /
    • 2004
  • 최근 원격 탐사 시스템 등이 발전함에 따라 축적된 공간 데이터의 양이 증가했고 이를 공간 데이터 웨어하우스 분야에서 의사 결정에 활용하는 방안이 중요한 이슈가 되고 있다. 기존의 활용 방법은 주어진 영역을 기준으로 공간 범위-집계를 검색하는 형태였지만, 최근 특정 성향 분석을 위해 분포 질의를 요청하고 그 결과 지역에 대한 공간 분석을 통한 의사결정의 필요성이 대두되었다. 하지만 기존의 처리 방법으로 비공간 질의를 처리하기 위해서는 모든 데이터를 검색해야 하므로 분포 질의를 처리하기 위한 비용이 증가하게 된다. 본 논문에서는 분포 지역 질의 처리를 위한 확장된 큐브 트리 기법을 제안한다. 제안하는 기법은 분석하고자 하는 사실 테이블의 비공간 속성을 큐브 트리의 키로 사용하고, 이 속성과 관련된 공간 데이터의 포인터 집합을 관리한다. 본 논문의 제안 기법을 공간 데이터 웨어하우스에 적용함으로써 비공간 속성 질의를 통해 공간 객체를 결과로 요청하는 형태의 질의를 지원할 수 있게 되며 사실 컬럼을 계층화시킴으로서 사용자에게 좀 더 다각적인 분석을 지원할 수 있다.

  • PDF

Development of the Data Conversion and Visualization Tool for 3D Spatial Information (3D 공간정보 데이터 포맷 변환 및 시각화 도구 개발)

  • Kang, Byoung-Jun;Jin, Sik;Kim, Kwang-Ho;Lee, Jae-Ho;Kim, In-Hyun
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.06a
    • /
    • pp.123-129
    • /
    • 2008
  • 본 연구에서는 국내 3차원 공간정보 데이터 표준 포맷인 3DF-GML 데이터 모델의 데이터 구조 분석을 수행하였다. 또한 3DF-GML 데이터 포맷과 기존 공간정보 데이터 포맷과의 전환 가능성을 검토하여 기존에 구축된 공간정보간의 연계 및 전환 가능성을 분석하였다. 이러한 분석 결과를 바탕으로 Shape파일, 3DS 데이터와 3DF-GML 데이터 간의 포맷 변환 도구를 개발하였으며, 변환된 3DF-GML 데이터의 유효성 검증을 위한 3DF-GML 가시화 도구를 개발하였다. 본 연구에서 제시한 3차원 공간정보 데이터 변환 및 가시화 도구는 국내 3차원 표준 포맷인 3DF-GML의 변환 및 가시화 기능을 제공해줌으로써, 다양한 응용 분야에서 3차원 공간정보 데이터 사용의 활성화에 크게 기여할 수 있을 것으로 기대한다.

  • PDF

Providing Service Model Based on Concept and Requirements of Spatial Big Data (공간 빅데이터의 개념 및 요구사항을 반영한 서비스 제공 방안)

  • Kim, Geun Han;Jun, Chul Min;Jung, Hui Cheul;Yoon, Jeong Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.89-96
    • /
    • 2016
  • By reviewing preceding studies of big data and spatial big data, spatial big data was defined as one part of big data, which spatialize location information and systematize time series data. Spatial big data, as one part of big data, should not be separated with big data and application methods within the system is to be examined. Therefore in this study, services that spatial big data is required to provide were suggested. Spatial big data must be available of various spatial analysis and is in need of services that considers present and future spatial information. Not only should spatial big data be able to detect time series changes in location, but also analyze various type of big data using attribute information of spatial data. To successfully provide the requirements of spatial big data and link various type of big data with spatial big data, methods of forming sample points and extracting attribute information were proposed in this study. The increasing application of spatial information related to big data is expected to attribute to the development of spatial data industry and technological advancement.

A Study of Spatial Patterns of Traffic Accident using GIS and Spatial Data Mining method : A Case Study of Kangnam-gu, Seoul (GIS와 공간 데이터마이닝을 이용한 교통사고의 공간적 패턴에 관한 연구 :서울시 강남구를 사례로)

  • 이건학
    • Proceedings of the KGS Conference
    • /
    • 2004.05a
    • /
    • pp.102-102
    • /
    • 2004
  • 많은 데이터들이 데이터베이스로 구축되면서, 데이터로부터 의미 있는 정보나 지식을 도출하기 위한 새로운 분석법이 제기 되었는데, 그 중 하나가 데이터 마이닝이다. 데이터 마이닝은 급격하게 증가하는 데이터들을 보다 효과적으로 분석하여 유용하고 의미 있는 정보나 지식을 찾기 위해 수행하는 데이터 분석 방법이다. 하지만 이러한 방법이 공간데이터에 적용될 때는 공간 데이터의 특수성으로 인해 그 효과를 기대하기가 어렵다. (중략)

  • PDF

Analysis of Spatial Structure in Geographic Data with Changing Spatial Resolution (해상도 변화에 따른 공간 데이터의 구조특성 분석)

  • 구자용
    • Spatial Information Research
    • /
    • v.8 no.2
    • /
    • pp.243-255
    • /
    • 2000
  • The spatial distribution characteristics and patterns of geographic features in space can be understood through a variety of analysis techniques. The scale is one of most important factors in spatial analysis techniques. This study is aimed at identifying the characteristics of spatial data with a coarser spatial resolution and finding procedures for spatial resolution in operational scale. To achieve these objectives, this study selected LANSAT TM imagery for Sunchon Bay, a coastal wetland for a study site, applied the indices for representing scale characteristics with resolution, and compared those indices. Local variance and fractal dimension developed by previous studies were applied to measure the textual characteristics. In this study, Moran s I was applied to measure spatial pattern change of variance data which were generated from the process of coarser resolution. Drawing upon the Moran s I of variancedata was optimum technique for analysing spatial structure than those of previous studies (local variance and fractal dimension). When the variance data represents maximum Moran´s I at certainly resolution, spatial data reveals maximum change at that resolution. The optimum resolution for spatial data can be explored by applying these results.

  • PDF

A MapReduce based Algorithm for Spatial Aggregation of Microblog Data in Spatial Social Analytics (공간 소셜 분석을 위한 마이크로블로그 데이터의 맵리듀스 기반 공간 집계 알고리즘)

  • Cho, Hyun Gu;Yang, Pyoung Woo;Yoo, Ki Hyun;Nam, Kwang Woo
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.781-790
    • /
    • 2015
  • In recent times, microblogs have become popular owing to the development of the Internet and mobile environments. Among the various types of microblog data, those containing location data are referred to as spatial social Web objects. General aggregations of such microblog data include data aggregation per user for a single piece of information. This study proposes a spatial aggregation algorithm that combines a general aggregation with spatial data and uses the Geohash and MapReduce operations to perform spatial social analysis, by using microblog data with the characteristics of a spatial social Web object. The proposed algorithm provides the foundation for a meaningful spatial social analysis.

Spatial Aggregations for Spatial Analysis in a Spatial Data Warehouse (공간 데이터 웨어하우스에서 공간 분석을 위한 공간 집계연산)

  • You, Byeong-Seob;Kim, Gyoung-Bae;Lee, Soon-Jo;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.3
    • /
    • pp.1-16
    • /
    • 2007
  • A spatial data warehouse is a system to support decision making using a spatial data cube. A spatial data cube is composed of a dimension table and a fact table. For decision support using this spatial data cube, the concept hierarchy of spatial dimension and the summarized information of spatial fact should be provided. In the previous researches, however, spatial summarized information is deficient. In this paper, the spatial aggregation for spatial summarized information in a spatial data warehouse is proposed. The proposed spatial aggregation is separated of both the numerical aggregation and the object aggregation. The numerical aggregation is the operation to return a numerical data as a result of spatial analysis and the object aggregation returns the result represented to object. We provide the extended struct of spatial data for spatial aggregation and so our proposed method is efficient.

  • PDF