With sensor and communication technology development, spatial data related to business activities is exploding. Spatial data is now evolving into atypical data about space over three dimensions, away from two-dimensional geographic data. In addition to the Fourth Industrial Revolution, which connects the virtual space with the real space, there is a great opportunity for companies to utilize it. The analysis of recent overseas cases shows that it is possible to analyze customized services by understanding the situation of customers and objects located in the space, to manage risk, and furthermore to innovate business processes by analyzing spatial data. In the future, business innovation that combines spatial data from various sources and real-time analysis of relationships and situations between people and objects in space is expected to expand in all business fields.
Each system should have a suitable data model about their purpose for efficiently managing, analyzing, and manipulating data. And the usable range of application is determined by the data model, and suitable data models are being developed for each application. In GIS, diversity spatial data model is being developed too. The accuracy and update of the spatial data would be important for applying efficient application as well as the data modeling is important as constructing the spatial data structure. Therefore, the purposes of this research are to 1)compare domestic spatial data models with oversea spatial data models about their geometry model, topology model and visualizing method of 3D spatial data 2)to compare the features of the data model by analyzing each data structures. We 3)compare and analyze features of each spatial data models via the quantitative analysis of each spatial data models.
Journal of Korea Spatial Information System Society
/
v.9
no.2
/
pp.81-91
/
2007
In this paper, we have proposed the non-duplication loading method for supporting spatio-temporal analysis in spatial data warehouse. SDW(Spatial Data Warehouse) extracts spatial data from SDBMS that support various service of different machine. In proposed methods, it extracts updated parts of SDBMS that is participated to source in SDW. And it removes the duplicated data by spatial operation, then loads it by integrated forms. By this manner, it can support fast analysis operation for spatial data and reduce a waste of storage space. Proposed method loads spatial data by efficient form at application of analysis and prospect by time like spatial mining.
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.76-78
/
2004
최근 원격 탐사 시스템 등이 발전함에 따라 축적된 공간 데이터의 양이 증가했고 이를 공간 데이터 웨어하우스 분야에서 의사 결정에 활용하는 방안이 중요한 이슈가 되고 있다. 기존의 활용 방법은 주어진 영역을 기준으로 공간 범위-집계를 검색하는 형태였지만, 최근 특정 성향 분석을 위해 분포 질의를 요청하고 그 결과 지역에 대한 공간 분석을 통한 의사결정의 필요성이 대두되었다. 하지만 기존의 처리 방법으로 비공간 질의를 처리하기 위해서는 모든 데이터를 검색해야 하므로 분포 질의를 처리하기 위한 비용이 증가하게 된다. 본 논문에서는 분포 지역 질의 처리를 위한 확장된 큐브 트리 기법을 제안한다. 제안하는 기법은 분석하고자 하는 사실 테이블의 비공간 속성을 큐브 트리의 키로 사용하고, 이 속성과 관련된 공간 데이터의 포인터 집합을 관리한다. 본 논문의 제안 기법을 공간 데이터 웨어하우스에 적용함으로써 비공간 속성 질의를 통해 공간 객체를 결과로 요청하는 형태의 질의를 지원할 수 있게 되며 사실 컬럼을 계층화시킴으로서 사용자에게 좀 더 다각적인 분석을 지원할 수 있다.
Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
/
2008.06a
/
pp.123-129
/
2008
본 연구에서는 국내 3차원 공간정보 데이터 표준 포맷인 3DF-GML 데이터 모델의 데이터 구조 분석을 수행하였다. 또한 3DF-GML 데이터 포맷과 기존 공간정보 데이터 포맷과의 전환 가능성을 검토하여 기존에 구축된 공간정보간의 연계 및 전환 가능성을 분석하였다. 이러한 분석 결과를 바탕으로 Shape파일, 3DS 데이터와 3DF-GML 데이터 간의 포맷 변환 도구를 개발하였으며, 변환된 3DF-GML 데이터의 유효성 검증을 위한 3DF-GML 가시화 도구를 개발하였다. 본 연구에서 제시한 3차원 공간정보 데이터 변환 및 가시화 도구는 국내 3차원 표준 포맷인 3DF-GML의 변환 및 가시화 기능을 제공해줌으로써, 다양한 응용 분야에서 3차원 공간정보 데이터 사용의 활성화에 크게 기여할 수 있을 것으로 기대한다.
Kim, Geun Han;Jun, Chul Min;Jung, Hui Cheul;Yoon, Jeong Ho
Journal of Korean Society for Geospatial Information Science
/
v.24
no.4
/
pp.89-96
/
2016
By reviewing preceding studies of big data and spatial big data, spatial big data was defined as one part of big data, which spatialize location information and systematize time series data. Spatial big data, as one part of big data, should not be separated with big data and application methods within the system is to be examined. Therefore in this study, services that spatial big data is required to provide were suggested. Spatial big data must be available of various spatial analysis and is in need of services that considers present and future spatial information. Not only should spatial big data be able to detect time series changes in location, but also analyze various type of big data using attribute information of spatial data. To successfully provide the requirements of spatial big data and link various type of big data with spatial big data, methods of forming sample points and extracting attribute information were proposed in this study. The increasing application of spatial information related to big data is expected to attribute to the development of spatial data industry and technological advancement.
많은 데이터들이 데이터베이스로 구축되면서, 데이터로부터 의미 있는 정보나 지식을 도출하기 위한 새로운 분석법이 제기 되었는데, 그 중 하나가 데이터 마이닝이다. 데이터 마이닝은 급격하게 증가하는 데이터들을 보다 효과적으로 분석하여 유용하고 의미 있는 정보나 지식을 찾기 위해 수행하는 데이터 분석 방법이다. 하지만 이러한 방법이 공간데이터에 적용될 때는 공간 데이터의 특수성으로 인해 그 효과를 기대하기가 어렵다. (중략)
The spatial distribution characteristics and patterns of geographic features in space can be understood through a variety of analysis techniques. The scale is one of most important factors in spatial analysis techniques. This study is aimed at identifying the characteristics of spatial data with a coarser spatial resolution and finding procedures for spatial resolution in operational scale. To achieve these objectives, this study selected LANSAT TM imagery for Sunchon Bay, a coastal wetland for a study site, applied the indices for representing scale characteristics with resolution, and compared those indices. Local variance and fractal dimension developed by previous studies were applied to measure the textual characteristics. In this study, Moran s I was applied to measure spatial pattern change of variance data which were generated from the process of coarser resolution. Drawing upon the Moran s I of variancedata was optimum technique for analysing spatial structure than those of previous studies (local variance and fractal dimension). When the variance data represents maximum Moran´s I at certainly resolution, spatial data reveals maximum change at that resolution. The optimum resolution for spatial data can be explored by applying these results.
Cho, Hyun Gu;Yang, Pyoung Woo;Yoo, Ki Hyun;Nam, Kwang Woo
Journal of KIISE
/
v.42
no.6
/
pp.781-790
/
2015
In recent times, microblogs have become popular owing to the development of the Internet and mobile environments. Among the various types of microblog data, those containing location data are referred to as spatial social Web objects. General aggregations of such microblog data include data aggregation per user for a single piece of information. This study proposes a spatial aggregation algorithm that combines a general aggregation with spatial data and uses the Geohash and MapReduce operations to perform spatial social analysis, by using microblog data with the characteristics of a spatial social Web object. The proposed algorithm provides the foundation for a meaningful spatial social analysis.
Journal of Korea Spatial Information System Society
/
v.9
no.3
/
pp.1-16
/
2007
A spatial data warehouse is a system to support decision making using a spatial data cube. A spatial data cube is composed of a dimension table and a fact table. For decision support using this spatial data cube, the concept hierarchy of spatial dimension and the summarized information of spatial fact should be provided. In the previous researches, however, spatial summarized information is deficient. In this paper, the spatial aggregation for spatial summarized information in a spatial data warehouse is proposed. The proposed spatial aggregation is separated of both the numerical aggregation and the object aggregation. The numerical aggregation is the operation to return a numerical data as a result of spatial analysis and the object aggregation returns the result represented to object. We provide the extended struct of spatial data for spatial aggregation and so our proposed method is efficient.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.