DOI QR코드

DOI QR Code

A MapReduce based Algorithm for Spatial Aggregation of Microblog Data in Spatial Social Analytics

공간 소셜 분석을 위한 마이크로블로그 데이터의 맵리듀스 기반 공간 집계 알고리즘

  • 조현구 (군산대학교 컴퓨터정보공학과) ;
  • 양평우 (군산대학교 컴퓨터정보공학과) ;
  • 유기현 (군산대학교 컴퓨터정보공학과) ;
  • 남광우 (군산대학교 컴퓨터정보공학과)
  • Received : 2015.01.16
  • Accepted : 2015.03.18
  • Published : 2015.06.15

Abstract

In recent times, microblogs have become popular owing to the development of the Internet and mobile environments. Among the various types of microblog data, those containing location data are referred to as spatial social Web objects. General aggregations of such microblog data include data aggregation per user for a single piece of information. This study proposes a spatial aggregation algorithm that combines a general aggregation with spatial data and uses the Geohash and MapReduce operations to perform spatial social analysis, by using microblog data with the characteristics of a spatial social Web object. The proposed algorithm provides the foundation for a meaningful spatial social analysis.

인터넷과 모바일 환경의 발전에 따라 최근에는 마이크로블로그가 성행하고 있다. 마이크로블로그에는 부가적인 데이터가 담겨있다. 그 중 위치 정보에 대한 데이터를 포함하는 마이크로블로그 데이터를 공간 소셜 웹 객체라고 지칭한다. 이러한 마이크로블로그 데이터에 대한 일반 집계는 사용자별 데이터 집계 등이 있으나, 단일 정보에 대한 집계만 가능하다. 본 연구는 공간 소셜 웹 객체의 특성을 갖는 마이크로블로그 데이터의 공간 소셜 분석을 위해, 일반 집계와 공간 데이터를 결합하고 지오해시와 맵리듀스를 이용한 공간 집계에 대한 알고리즘을 제시한다. 이를 통해 의미있는 공간 소셜에 대한 분석의 기반을 마련하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단, 국토교통부

References

  1. P. Bausch, M. Haughey, and M. Hourihan, "We blog: Publishing online with weblogs," John Wiley & Sons, Inc., 2002.
  2. S. S. Lee, D. Won, and D. McLeod, "Tag-geotag correlation in social networks," Proc. of the 2008 ACM workshop on Search in social media, pp. 59-66. Oct. 2008.
  3. G. Cong, C. S. Jensen, and D. Wu, "Efficient retrieval of the top-k most relevant spatial web objects," Proc. of the VLDB Endow., Vol. 2, Issue. 1, pp. 337-348, Aug. 2009. https://doi.org/10.14778/1687627.1687666
  4. D. Wu, G. Cong, and C. S. Jensen, "A framework for efficient spatial web object retrieval," the International Journal on Very Large Data Bases, Vol. 21, Issue. 6, pp. 797-822, Dec. 2012. https://doi.org/10.1007/s00778-012-0271-0
  5. Twitter, Available: http://www.twitter.com
  6. T. White, "Hadoop: The definitive guide," O'Reilly Media, Inc., 2012.
  7. K. Shvachko, H. Kuang, S. Radia, and R. Chansler, "The hadoop distributed file system," Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on, pp. 1-10, May. 2010
  8. J. Dean, and S. Ghemawat, "MapReduce: simplified data processing on large clusters," Communications of the ACM, Vol. 51, Issue. 1, pp. 107-113, Jan. 2008. https://doi.org/10.1145/1327452.1327492
  9. H. C. Yang, A. Dasdan, R. L. Hsiao, and D. S. Parker, "Map-reduce-merge: simplified relational data processing on large clusters." Proc. of the 2007 ACM SIGMOD international conference on Management of data, pp. 1029-1040, Jun. 2007.
  10. Wikipedia, "Geohash," Available: http://en.wikipedia.org/wiki/Geohash
  11. N. Dimiduk, A. Khurana, M. H. Ryan, and M. Stack, "HBase in action," Manning, 2013.
  12. F. Abel, Q. Gao, G.J. Houben, and K. Tao, "Semantic enrichment of twitter posts for user profile construction on the social web," The Semanic Web: Research and Applications, pp. 375-389, 2011.
  13. M. Cordeiro, "Twitter event detection: Combining wavelet analysis and topic inference summarization," In Doctoral Symposium on Informatics Engineering, 2012.
  14. V. Singh, M. Gao and R. Jain, "Event Analytics on Microblogs," Web Science Conf., 2010.
  15. T. Sakaki, M. Okazaki, and Y. Matsuo, "Earthquake shakes Twitter users: real-time event detection by social sensors," Proc. of the 19th international conference on World wide web, ACM, pp. 851-860, 2010.
  16. N. R. Adam, B. Shafiq, and R. Staffin, "Spatial computing and social media in the context of disaster management," Intelligent Systems, IEEE, Vol. 27, Issue 6, pp. 90-96, 2012. https://doi.org/10.1109/MIS.2012.113

Cited by

  1. A basis of spatial big data analysis with map-matching system vol.20, pp.3, 2017, https://doi.org/10.1007/s10586-017-1014-1