• Title/Summary/Keyword: 공간곡선

Search Result 578, Processing Time 0.023 seconds

Shielding Effectiveness of Magnetite Heavy Concrete on Cobalt-60 Gamma-rays

  • Lim, Yong-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.65-75
    • /
    • 1971
  • The gamma-ray shielding effects of magnetite concretes have been measured using a broad beam Co-60 gamma-ray source. Mathematical formulae for a trans-mission ratio-to-shield thickness relation were derived from the attenuation curve obtained experimentally and are I (x) = I (ο) exp(-$\mu$X) exp(1.03$\times$10$^{-1}$ X-3.38$\times$10$^{-3}$ X$^2$+5.29$\times$10$^{-5}$ X$^3$) when X< 20 cm, I (x) =I (ο) exp(-$\mu$X) exp(4.66$\times$10$^{-2}$ X+2.12$\times$10$^{-1}$ ) when X>20 cm. Here I (x) is radiation intensity after passing through a thickness X of absorber, I(o) is the initial radiation intensity, $\mu$ is the linear attenuation coefficient of magnetite concrete and is given by (0.0532$\rho$+ 0.0083)$^{4)}$ $cm^{-1}$ / in accordance with an earlier study, and X is the thickness of absorber. In addition, a model shield which is a rectangular magnetite concrete box with walls of 8cm thickness walls and internal demensions of 40$\times$40$\times$40 cm was constructed and its shielding effect has been measured. The emergent radiation flux appears to be greater with this configuration than with a slab shield of equal thickness.

  • PDF

Heat Transfer Characteristics for Inward Solidification in a Horizontal Cylinder Packed with P.C.M. (상변화물질을 충전한 수평원통관 내에서 응고시 열전달특성)

  • Yum, Sung-Bae;Hong, Chang-Shik;Lee, Chai-Sung
    • Solar Energy
    • /
    • v.11 no.2
    • /
    • pp.51-62
    • /
    • 1991
  • Heat transfer characteristics for heat retrieving processes in a paraffin-filled horizontal circular cylinder was studied. Theoretical and experimental analyses were carried out. In the theoretical analysis, solid and liquid phases were treated separately. Namely, convection for liquid and conduction for solid phase were investigated respectively. The retrieved heat was calculated from the experimentally determined solidified mass. Furthermore, the effects of initial temperature of the liquid and cooling temperature on the heat discharge rate were also studied. In the heat retrieving process, the governing factor for the solidifying rate is the cooling temperature, because most of the liquid sensible heat is rapidly discharged in the initial stage of solidification. Hence heat transfer mechanism during heat retrieving process can be safely considered as conduction. In the cut of frozen paraffin, there showed an empty space in the upper region. It is caused by the temperature drop in the liquid paraffin. While volume shrinkage caused by phase transition was indiscernible. Irrespective of cooling temperature and initial liquid temperature, solidified mass was well-correlated with the product of Fourier number and Stefan number in the solid phase.

  • PDF

A Hydrometeorological Time Series Analysis of Geum River Watershed with GIS Data Considering Climate Change (기후변화를 고려한 GIS 자료 기반의 금강유역 수문기상시계열 특성 분석)

  • Park, Jin-Hyeog;Lee, Geun-Sang;Yang, Jeong-Seok;Kim, Sea-Won
    • Spatial Information Research
    • /
    • v.20 no.3
    • /
    • pp.39-50
    • /
    • 2012
  • The objective of this study is the quantitative analysis of climate change effects by performing several statistical analyses with hydrometeorological data sets for past 30 years in Geum river watershed. Temperature, precipitation, relative humidity data sets were collected from eight observation stations for 37 years(1973~2009) in Geum river watershed. River level data was collected from Gongju and Gyuam gauge stations for 36 years(1973~2008) considering rating curve credibility problems and future long-term runoff modeling. Annual and seasonal year-to-year variation of hydrometeorological components were analyzed by calculating the average, standard deviation, skewness, and coefficient of variation. The results show precipitation has the strongest variability. Run test, Turning point test, and Anderson Exact test were performed to check if there is randomness in the data sets. Temperature and precipitation data have randomness and relative humidity and river level data have regularity. Groundwater level data has both aspects(randomness and regularity). Linear regression and Mann-Kendal test were performed for trend test. Temperature is increasing yearly and seasonally and precipitation is increasing in summer. Relative humidity is obviously decreasing. The results of this study can be used for the evaluation of the effects of climate change on water resources and the establishment of future water resources management technique development plan.

Constitutive Characteristics of Decomposed Korean Granites(1) (구성식을 이용한 다짐화강토의 공학적 특성(1))

  • Kim, Yong-Jin;Lee, In-Mo;Lee, In-Geun
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.55-78
    • /
    • 1994
  • Decomposed granite soil is a Granitic Gneiss, and it is a c Korean peninsula. It is known a changed significantly when it is aim of this study is to evaluat utility of the constitutive laws. Firstly, triaxial tests were pe sites prepared by the laborato scrutinized the characteristics results were analysed and the p evaluated. Finally, the predicted Even though the origins of slight difference in the angle of pression line( A) : both soils show In the effective mean normal uniqueness of the Normal Compr The relationships between the the decomposed granite soil tier OCR is larger than 2, the stress stress(MDS) or. even thous moved below the theoretical Ros was found to coincide with the (NC) soils, the pore pressure parameter, A,, increased up to 1.3. This phenomenon might be mainly due to the effect of the particle crushing during shearing, When the OCR value approaches 7, the negative pore pressure is developed in undrained tests and the dilatancy is observed in drained tests. The predicted and the observed behavior of drained tests showed relatively good fitting with the Cam-Clay model.

  • PDF

DEVELOPMENT OF PASSENGER SAFETY BOARD FOR RAILWAY VEHICLE USE

  • Mun Hyung-Suk;Eum Ki-Young;Koo Dong-Hoe
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.287-294
    • /
    • 2003
  • There are a lot of curved subway stations in Seoul metropolitan area. These must be straightly constructed as many as possible. But some of stations are roundly designed and built in order to avoid pre-existed underground obstacle such as basement of high rise building, underground gas or water pipe line and subway stations from another line. As shown fig 1, one of the biggest problem occurring curved subway station is considered large gap between platform and vehicle when vehicle completely stop at the station. The gap potentially is in existence to subway passenger as very dangerous factors in rush hours. If passenger accidentally drop their food or leg between this gap when they get on the train and train leaves station, the passenger will be seriously injured by vehicle. In this paper, various design and instruments are introduced and best solution for this matter will be presented. In order to eliminate any possibility of accident happened gap between platform and vehicle, KRRI(Korea Railroad Research Institute) have been developed new safety instrument. These technologies were applied for patent by KRRI. These mechanisms will provide confidence as well as safety to Korean subway passenger

  • PDF

A Study on Rainfall-Pattern Analysis for determination of Design flow in small watershed (소유역의 설계유량 산정을 위한 강우현상 분석에 관한 연구)

  • 박찬영;서병우
    • Water for future
    • /
    • v.14 no.4
    • /
    • pp.13-18
    • /
    • 1981
  • The rainfall pattern analysis on time distribution characteristics of rainfall rates in important in determination of design flow for hydraulic structures, particularly in urban area drainage network system design. The historical data from about 400 storm samples during 31 years in Seoul have been used to investigate the time distribution of 5-minute rainfall in the warm season. Time distribution relations have been deveolped for heavy stroms over 20mm in total rainfall and represented by relation percentage of total storm rainfall to percentage of total storm time and grouping the data according to the quartile in which rainfall was heaviest. And also time distribution presented in probability terms to provide quantitative information on inter-strom variability. The resulted time distribution relations are applicable to construction of rainfall hyetograph of design storm for determination of design flow hydrograph and identification of rainfall pattern at given watershed area. They can be used in conjuction with informations on spatstorm models for hydrologic applications. It was found that second-quartile storms occurred most frequently and fourth-quartile storms most infrequently. The time distribution characteristics resulted in this study have been presented in graphic forms such as time distribution curves with probability in cumulative percent of storm-time and precipitation, and selected histograms for first, second, third, and fourth quartile stroms.

  • PDF

GPS/INS Integration and Preliminary Test of GPS/MEMS IMU for Real-time Aerial Monitoring System (실시간 공중 자료획득 시스템을 위한 GPS/MEMS IMU 센서 검증 및 GPS/INS 통합 알고리즘)

  • Lee, Won-Jin;Kwon, Jay-Hyoun;Lee, Jong-Ki;Han, Joong-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.225-234
    • /
    • 2009
  • Real-time Aerial Monitoring System (RAMS) is to perform the rapid mapping in an emergency situation so that the geoinformation such as orthophoto and/or Digital Elevation Model is constructed in near real time. In this system, the GPS/INS plays an very important role in providing the position as well as the attitude information. Therefore, in this study, the performance of an IMU sensor which is supposed to be installed on board the RAMS is evaluated. And the integration algorithm of GPS/INS are tested with simulated dataset to find out which is more appropriate in real time mapping. According to the static and kinematic results, the sensor shows the position error of 3$\sim$4m and 2$\sim$3m, respectively. Also, it was verified that the sensor performs better on the attitude when the magnetic field sensor are used in the Aerospace mode. In the comparison of EKF and UKF, the overall performances shows not much differences in straight as well as in curved trajectory. However, the calculation time in EKF was appeared about 25 times faster than that of UKF, thus EKF seems to be the better selection in RAMS.

Jens Jensen's Naturalistic Landscape Style and Its Expression Characteristics (젠스 젠슨(Jens Peter Jensen)의 자연주의적 조경양식 및 표현특성)

  • Park, Eun-Yeong;Lee, Hyung-Sook
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.2
    • /
    • pp.61-67
    • /
    • 2018
  • Jens Jensen was an American landscape architect and early conservationist who pioneered a unique naturalistic landscape style. The purpose of the present study is to study Jensen's life, careers, design philosophy, and his contributions to the history of landscape architecture. Inspired by nature, Jensen worked closely with native plants, local materials, curvilineal and circular forms, and native scenery. His pioneering work in the Chicago's West Parks, including the design of Columbus Park and Humboldt, Garfield and Douglas Parks, was informed by his philosophical belief in the humanizing power of parks. In summary, first, Jensen played a prominent role in the creation of a unique native landscape style respecting regional landscape. Second, as a devoted conservationist and educator he organized conservation movements preserving landscape heritage and founded a education institution. Third, as a social reformer he emphasized the value of parks and nearby nature for urban citizens and children. Jensen's visions and philosophies have influenced on recent naturalistic landscape style and conservation efforts to preserve cultural landscape and natural environment.

Study on Water Stage Prediction Using Hybrid Model of Artificial Neural Network and Genetic Algorithm (인공신경망과 유전자알고리즘의 결합모형을 이용한 수위예측에 관한 연구)

  • Yeo, Woon-Ki;Seo, Young-Min;Lee, Seung-Yoon;Jee, Hong-Kee
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.8
    • /
    • pp.721-731
    • /
    • 2010
  • The rainfall-runoff relationship is very difficult to predict because it is complicate factor affected by many temporal and spatial parameters of the basin. In recent, models which is based on artificial intelligent such as neural network, genetic algorithm fuzzy etc., are frequently used to predict discharge while stochastic or deterministic or empirical models are used in the past. However, the discharge data which are generally used for prediction as training and validation set are often estimated from rating curve which has potential error in its estimation that makes a problem in reliability. Therefore, in this study, water stage is predicted from antecedent rainfall and water stage data for short term using three models of neural network which trained by error back propagation algorithm and optimized by genetic algorithm and training error back propagation after it is optimized by genetic algorithm respectively. As the result, the model optimized by Genetic Algorithm gives the best forecasting ability which is not much decreased as the forecasting time increase. Moreover, the models using stage data only as the input data give better results than the models using precipitation data with stage data.

Estimation Error of Areal Average Rainfall and Its Effect on Runoff Computation (면적평균강우의 추정오차와 유출계산에 미치는 영향)

  • Yu, Cheol-Sang;Kim, Sang-Dan;Yun, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.3
    • /
    • pp.307-319
    • /
    • 2002
  • This study used the WGR model to generate the rainfall input and the modified Clark method to estimate the runoff with the aim of investigating how the errors from the areal average rainfall propagates to runoff estimates. This was done for several cases of raingauge density and also by considering several storm directions. Summarizing the study results are as follows. (1) Rainfall and runoff errors decrease exponentially as the raingauge density increases. However, the error stagnates after a threshold density of raingauges. (2) Rainfall errors more affect to runoff estimates when the density of raingauges is relatively low. Generally, the ratio between estimation errors of rainfall and runoff volumes was found much less than one, which indicates that there is a smoothing effect of the basin. However, the ratio between estimation errors of rainfall to peak flow becomes greater than one to indicate the amplification of rainfall effect to peak flow. (3) For the study basin in this studs no significant effect of storm direction could be found. However, the runoff error becomes higher when the storm and drainage directions are identical. Also, the error was found higher for the peak flow than for the overall runoff hydrograph.