DOI QR코드

DOI QR Code

Estimation Error of Areal Average Rainfall and Its Effect on Runoff Computation

면적평균강우의 추정오차와 유출계산에 미치는 영향

  • Yu, Cheol-Sang (Dept.of Civil Environment Engineering, Sungkyunkwan University) ;
  • Kim, Sang-Dan (Research Assistant, Department of Civil and Env. Engr., Korea University) ;
  • Yun, Yong-Nam (Dept. of Civil and Envir Engrg, Korea University)
  • Published : 2002.06.01

Abstract

This study used the WGR model to generate the rainfall input and the modified Clark method to estimate the runoff with the aim of investigating how the errors from the areal average rainfall propagates to runoff estimates. This was done for several cases of raingauge density and also by considering several storm directions. Summarizing the study results are as follows. (1) Rainfall and runoff errors decrease exponentially as the raingauge density increases. However, the error stagnates after a threshold density of raingauges. (2) Rainfall errors more affect to runoff estimates when the density of raingauges is relatively low. Generally, the ratio between estimation errors of rainfall and runoff volumes was found much less than one, which indicates that there is a smoothing effect of the basin. However, the ratio between estimation errors of rainfall to peak flow becomes greater than one to indicate the amplification of rainfall effect to peak flow. (3) For the study basin in this studs no significant effect of storm direction could be found. However, the runoff error becomes higher when the storm and drainage directions are identical. Also, the error was found higher for the peak flow than for the overall runoff hydrograph.

본 연구에서는 WGR 강우모형으로부터 모의된 공간적으로 분포된 강우자료를 수정Clark방법으로 유출 해석하여 면적평균강우의 추정에 따른 오차와 유출오차사이의 관계론 고찰해 보았다. 이러한 관계는 강우관측소의 밀도를 다양하게 변화시켜가며 아울러 호우의 방향을 여러 가지 경우로 가정하여 살펴보았으며, 그 결과를 정리하면 다음과 같다. (1) 면적평균강우의 추정오차 및 이에 따른 유출오차는 강우관측소의 밀도가 높아짐에 따라 지수함수적으로 줄어들고 있으며, 어떤 밀도 이상이 되면 그 감소 폭이 크게 둔화되는 것으로 나타났다. (2) 면적평균강우의 추정오차는 강우관측소의 밀도가 작을수록 유출에 보다 큰 영향력을 미치고 있음을 알 수 있었다. 그러나 면적평균 강우-유출의 관계에서는 그 오차의 비가 1.0이하로 유역면적평균강우 추정시의 오차가 유출에 감소되어 전달되는데 비해 첨두유출량에는 그대로 또는 경우에 따라 증폭되어 전달됨을 파악할 수 있었다. (3) 호우의 방향성에 따른 강우오차는 크게 영향 받지 않는 것으로 판단된다. 그러나, 유출오차는 호우의 방향이 유역의 배수방향에 일치하는 경우에 더 크게 나타나고 있으며, 특히 수문곡선의 형상적인 측면에서보다는 첨두유출량에 더 많은 영향력을 미치고 있는 것으로 보여진다.

Keywords

References

  1. 건설교통부 (1998). 국제수문개발계획(IHP)
  2. 김상단, 유철상, 김중훈, 윤용남 (2000). '다차원 강우 모형의 시간적인 특성연구,' 한국수자원학회논문집, 제33권, pp. 783-791
  3. 유철상 (1997). '관측오차문제에 대한 다차원 강우모형의 적용.' 한국수자원학회논문집, 제30권, pp. 441-447
  4. 윤용남 (1994). 공업수문학, 청문각, pp. 42-81
  5. 윤용남, 김중훈, 유철상, 김상단 (2002), '공간 분포된 강우를 사용한 유출 매개변수 추정 및 강우오차가 유출계산에 미치는 영향분석', 한국수자원학회논문집, 제35권, pp. 1-13 https://doi.org/10.3741/JKWRA.2002.35.1.001
  6. Clark, C. O. (1945). Storage and the Unit Hydrograph. Trans. Am Soc. Civ. Eng., Vol. 110, pp. 1419-1446
  7. Hamlin, M. J. (1983). The Significance of Rainfall in the Study of Hydrological Process at Basin Scale, J. of Hydrology, Vol. 65, pp. 73-94 https://doi.org/10.1016/0022-1694(83)90211-1
  8. Hydrologic Engineering Center (1995). Modified Clark (modClark) Runoff Simulation User's Manual. U.S. Army Corps of Engineers, Davis CA
  9. Islam, S., R. L. Bras and I. Rodriguez-Itube (1988). Multi-dimensional Modeling of Cumulative Rainfall: Parameter Estimation and Model Adequacy through a Continuum of Scales, Water Resour. Res., Vol. 24, No.7, pp. 985-992 https://doi.org/10.1029/WR024i007p00985
  10. Koepsell, R. W. and J. B. Valdes (1991). Multidimensional Rainfall Parameter Estimation from Sparse Network, ASCE J. Hydraulic Eng., Vol. 117, pp. 832-850 https://doi.org/10.1061/(ASCE)0733-9429(1991)117:7(832)
  11. Kull, W. D and Feldman, D. A (1998). EVolution of Clark's Unit Graph Method to Spatially Distributed Runoff. J. of Hydrologic Eng., Vol. 3, No.1, pp. 9-19 https://doi.org/10.1061/(ASCE)1084-0699(1998)3:1(9)
  12. Maidment, D. R. (1992). Grid-based computation of runoff: a preliminary assessment, Prepared for Hydrologic Engineering Center, Davis, Calif
  13. Maidment, D. R. (1994). Digital delineation of watersheds and stream networks in the Allegheny basin, Prepared for Hydrologic Engineering Center, Davis, Calif
  14. Mays, L. W. and Tung, Y-K (1992). Hydrosystems Engineering and Management, McGraw-Hill, Inc., International Editions, pp. 106-163
  15. Milly, P. C. D, and Eagleson, P. S. (1983). Effect of Storm Scale on Surface Runoff Volume, Water Resour. Res., Vol. 24, No.4, pp. 249-260
  16. Nicks, A. D. (1982). Space-Time Quantification of Rainfall Inputs for Hydrological Transport Models, J. of Hydrology, Vol. 59, pp. 249-260 https://doi.org/10.1016/0022-1694(82)90090-7
  17. Waymire, E., V. K. Gupta, and I. Rodriguez-Itube (1984). A Spectral Theory of Rainfall Intensity at the $Meso-{\beta}$ Scale, Water Resour. Res., Vol. 20, No. 10, pp. 1453-1465 https://doi.org/10.1029/WR020i010p01453
  18. Wilson, C. B., Valdes, J. B., and Rodriguez-Itube, I. (1979). On the Influence of the Spatial Distribution of Rainfall on Storm Runoff, Water Resour. Res., Vol. 15, No.2, pp. 321-328 https://doi.org/10.1029/WR015i002p00321
  19. Yoo, C., and Kwon, S. (2000). Characterization of Rainrate Fields Using a Multi-Dimensional Precipitation Model, J. of Korea Water Resour. Association, Vol. 1, No.2, pp. 147-158

Cited by

  1. Inter-station correlation and estimation errors of areal average rain rate vol.22, pp.2, 2008, https://doi.org/10.1007/s00477-007-0104-7
  2. Prospect of Design Rainfall in Urban Area Considering Climate Change vol.46, pp.6, 2013, https://doi.org/10.3741/JKWRA.2013.46.6.683
  3. Development of Radar Polygon Method : Areal Rainfall Estimation Technique Based on the Probability of Similar Rainfall Occurrence vol.48, pp.11, 2015, https://doi.org/10.3741/JKWRA.2015.48.11.937