• 제목/요약/키워드: 곱 기계

검색결과 114건 처리시간 0.026초

장기 GOCI 자료를 활용한 인공지능 기반 원격 반사도 예측 모델 개발 (Development of Artificial Intelligence-Based Remote-Sense Reflectance Prediction Model Using Long-Term GOCI Data)

  • 이동욱;유주형;주형태;곽근호
    • 대한원격탐사학회지
    • /
    • 제39권6_2호
    • /
    • pp.1577-1589
    • /
    • 2023
  • 해양의 모니터링을 위해서는 변화를 예측하는 과정이 필요하다는 것은 널리 인정되고 있다. 이 연구에서는 Geostationary Ocean Color Imager (GOCI) 자료를 이용하여 해양의 변화를 지시할 수 있는 반사도의 시계열 예측을 수행하였다. 이를 위해 다중 규모 Convolutional Long-Short-Term-Memory (ConvLSTM) 모델을 제안하였으며, GOCI-I 자료를 이용하여 모델을 학습하였다. 취득 기간이 다른 GOCI-II 자료를 이용하여 모델의 성능을 검증하였으며, 기존의 ConvLSTM 모델과 성능을 비교하였다. 비교 결과, 제안한 모델은 시공간적 특성을 모두 고려하여 반사도의 변화 경향성을 파악하는데 있어 가장 우수한 결과를 보였다. 장기 예측 결과를 통해 모델이 학습한 반사도의 시간적 변화 경향을 확인하였으며, 이를 이용한 주기적 변화 탐지가 가능할 것으로 기대된다.

상추잎 너비와 길이 예측을 위한 합성곱 신경망 모델 비교 (Comparison of Convolutional Neural Network (CNN) Models for Lettuce Leaf Width and Length Prediction)

  • 송지수;김동석;김효성;정은지;황현정;박재성
    • 생물환경조절학회지
    • /
    • 제32권4호
    • /
    • pp.434-441
    • /
    • 2023
  • 식물의 잎의 크기나 면적을 아는 것은 생장을 예측하고 실내 농장의 생산성의 향상에 중요한 요소이다. 본 연구에서는 상추 잎 사진을 이용해 엽장과 엽폭을 예측할 수 있는 CNN기반 모델을 연구하였다. 데이터의 한계와 과적합 문제를 극복하기 위해 콜백 함수를 적용하고, 모델의 일반화 능력을 향상시키기 위해 K겹교차 검증을 사용했다. 또한 데이터 증강을 통한 학습데이터의 다양성을 높이기 위해 image generator를 사용하였다. 모델 성능을 비교하기 위해 VGG16, Resnet152, NASNetMobile 등 사전학습된 모델을 이용하였다. 그 결과 너비 예측에서 R2 값0.9436, RMSE 0.5659를 기록한 NASNetMobile이 가장 높은 성능을 보였으며 길이 예측에서는 R2 값이 0.9537, RMSE가 0.8713로 나타났다. 최종 모델에는 NASNetMobile 아키텍처, RMSprop 옵티마이저, MSE 손실 함수, ELU 활성화함수가 사용되었다. 모델의 학습 시간은 Epoch당평균73분이 소요되었으며, 상추 잎 사진 한 장을 처리하는 데 평균0.29초가 걸렸다. 본 연구는 실내 농장에서 식물의 엽장과 엽폭을 예측하는 CNN 기반 모델을 개발하였고 이를 통해 단순한 이미지 촬영만으로도 식물의 생장 상태를 신속하고 정확하게 평가할 수 있을 것으로 기대된다. 또한 그 결과는 실시간 양액 조절 등의 적절한 농작업 조치를 하는데 활용됨으로써 농장의 생산성 향상과 자원 효율성을 향상시키는데 기여할 것이다.

몬테카를로 방법과 ISO-GUM 방법의 불확도 평가 결과 비교 (Comparison of ISO-GUM and Monte Carlo Method for Evaluation of Measurement Uncertainty)

  • 하영철;허재영;이승준;이강진
    • 대한기계학회논문집B
    • /
    • 제38권7호
    • /
    • pp.647-656
    • /
    • 2014
  • 본 연구에서는 ISO GUM(불확도 표현 지침서)의 불확도 평가 방법을 보완하기 위해, 몬테카를로 방법(Monte Carlo Method, MCM)을 적용한 불확도 해석 프로그램을 개발하고, MCM과 GUM의 평가 결과를 비교하였다. 그 결과 다음과 같은 결과를 도출하였다. 첫째, 측정량의 확률 분포가 정규 분포가 아닌 때에도 MCM 방법은 정확한 포함 구간을 제공한다. 둘째, 정규 분포가 아닌 다른 분포들 몇몇 개가 합성되는 경우 그 확률 분포가 정규로 보이더라도 실제로는 정규가 아닌 경우가 있으며, 이의 판단은 합성 분산의 확률 분포로 할 수 있다. 셋째, 자유도가 낮은 A형 불확도가 불확도 평가에 포함된 경우 GUM은 포함 구간을 저평가하는 것을 알 수 있었고, 이러한 저평가 문제는 A형 표준 불확도에 t-분포의 표준 편차를 곱해주면 사라지는 것을 알 수 있었다. 이 경우 합성 분산의 유효 자유도는 확장 불확도 계산에 불필요하고, 신뢰의 수준 95 %의 포함 인자는 1.96이 적정한 것을 알 수 있었다.

유한요소 비압축성 유동장 해석을 위한 이중공액구배법의 GPU 기반 연산에 대한 연구 (A Study on GPU Computing of Bi-conjugate Gradient Method for Finite Element Analysis of the Incompressible Navier-Stokes Equations)

  • 윤종선;전병진;정혜동;최형권
    • 대한기계학회논문집B
    • /
    • 제40권9호
    • /
    • pp.597-604
    • /
    • 2016
  • 본 연구에서는 GPU를 이용한 비압축성 유동장의 병렬연산을 위하여, P2P1 유한요소를 이용한 분리 알고리즘 내의 행렬 해법인 이중공액구배법(Bi-Conjugate Gradient)의 CUDA 기반 알고리즘을 개발하였다. 개발된 알고리즘을 이용해 비대칭 협착관 유동을 해석하고, 단일 CPU와의 계산시간을 비교하여 GPU 병렬 연산의 성능 향상을 측정하였다. 또한, 비대칭 협착관 유동 문제와 다른 행렬 패턴을 가지는 유체구조 상호작용 문제에 대하여 이중공액구배법 내의 희소 행렬과 벡터의 곱에 대한 GPU의 병렬성능을 확인하였다. 개발된 코드는 희소 행렬의 1개의 행과 벡터의 내적을 병렬 연산하는 커널(Kernel)로 구성되며, 최적화는 병렬 감소 연산(Parallel Reduction), 메모리 코얼레싱(Coalescing) 효과를 이용하여 구현하였다. 또한, 커널 생성 시 워프(Warp)의 크기에 따른 성능 차이를 확인하였다. 표준예제들에 대한 GPU 병렬연산속도는 CPU 대비 약 7배 이상 향상됨을 확인하였다.

시계열 기계학습을 이용한 한반도 남해 해수면 온도 예측 및 고수온 탐지 (Prediction of Sea Surface Temperature and Detection of Ocean Heat Wave in the South Sea of Korea Using Time-series Deep-learning Approaches)

  • 정시훈;김영준;박수민;임정호
    • 대한원격탐사학회지
    • /
    • 제36권5_3호
    • /
    • pp.1077-1093
    • /
    • 2020
  • 해수면 온도는 전 세계 해양, 기상 현상에 영향을 주고 해양 환경 변화와 생물에게 영향을 주는 중요한 요소이다. 특히, 우리나라 남해안을 비롯한 연안 지역의 경우 어업 및 양식업 등의 수산업이 많이 발달하여, 매년 고수온 현상으로 인한 사회·경제적 피해가 발생하고 있다. 따라서 위성 자료와 같은 광범위한 지역을 감시할 수 있는 자료를 활용한 해수면 온도 및 공간적 분포의 예측기술 개발을 통하여 피해를 예방할 수 있는 시스템을 구축할 필요가 있다. 해수면 온도 예측은 기존의 수치 모델을 통해서 예측을 진행하였지만, 다수의 역학적 요인들을 사용하여 예측 결과 산출 시 복잡함이 존재한다. 최근 기계학습 및 딥러닝 기법이 발달함에 따라 해양 분야의 예측에 적용하는 연구가 진행되고 있다. 본 연구는 그 중 시·공간적인 일관성 및 정확도가 높은 장단기 기억(Long Short Term Memory, LSTM)과 합성곱 장단기 기억(Convolutional Long Short Term Memory, ConvLSTM) 딥러닝 기법을 사용하여 남해지역의 해수면온도 예측 및 2017년부터 2019년까지의 고수온 발생 건에 대해서 예측 결과의 공간 분포와 공간 분포와 예측 가능성에 대해 분석을 하였다. 1일 예측 모델의 정확도는 RMSE 기준으로 ConvLSTM(전체: 0.33℃, 봄: 0.34℃, 여름: 0.27℃, 가을: 0.32℃, 겨울: 0.36℃)이 LSTM 기반의 예측 모델(전체: 0.40℃, 봄: 0.40℃, 여름: 0.48℃, 가을: 0.39℃, 겨울: 0.34℃)보다 우수한 성능을 보였다. 2017년 고수온 발생 사례에 대해 해수면 온도 예측과 고수온 탐지 성능에서 ConvLSTM은 5일까지 경보를 탐지하였지만, LSTM의 경우 2일 예측 이후 해수면 온도를 과소 추정하는 경향이 커짐에 따라 탐지하지 못하였다. 시공간적인 해수면 온도 예측 시 ConvLSTM이 LSTM에 비해 적절한 모델로 판단된다.

국내 배달음식 이용건수 분석 및 예측 (A Study on the Number of Domestic Food Delivery Services)

  • 권재영;김시내;박은지;송종우
    • 응용통계연구
    • /
    • 제28권5호
    • /
    • pp.977-990
    • /
    • 2015
  • 우리나라는 세계적으로 배달음식 문화가 가장 많이 발달한 나라 중에 하나로 최근에는 일인가구의 증가와 배달앱 시장의 발달과 함께 그 성장 속도 또한 눈부시게 증가하고 있다. 따라서 배달음식 이용에 큰 영향을 미칠 것으로 예상되는 날씨와 날짜별 변수를 고려하여 시간대별 배달음식 이용건수를 예측함으로써 소비자와 생산자 모두에게 이익을 주는 예측모형을 찾고자 한다. 본 연구의 목적은 다양한 데이터마이닝 기법을 이용하여 2014년도 배달음식 통화건수를 예측하는데 있다. 예측에 사용되는 회귀 모형은 선형회귀모형, 랜덤 포레스트, 그래디언트 부스팅, 서포트 벡터 기계, 신경망, 로지스틱 회귀모형으로 총 6가지이다. 고려되는 배달음식 업종은 총 4가지(족발/보쌈정식, 중국음식, 치킨, 피자)로 크게 두 가지 방법을 이용하여 각 업종별 배달음식 이용건수를 예측하였다. 첫 번째 방법은 총 이용건수와 각 업종별 배달음식 이용비율을 곱하여 각 업종별 배달음식 이용건수를 예측하는 것이고, 두 번째 방법은 각 업종별 모형을 세워 각 업종별 배달음식 이용건수를 예측하는 방법이다. 최종적으로 선택된 모형은 방법 1에서는 신경망 모형과 선형회귀모형이며, 방법 2에서는 신경망 모형이었다. 방법 2보다는 방법 1로 구한 결과가 더 예측력이 좋은 것으로 나타났다.

지역난방 사용자 구성비에 따른 열소비 패턴 분석 (Heat Consumption Pattern Analysis by the Component Ratio of District Heating Users)

  • 이훈;이민경;김래현
    • 에너지공학
    • /
    • 제22권2호
    • /
    • pp.211-225
    • /
    • 2013
  • 본 연구에서는 서로 다른 위도의 도시 유형별로 주택과 건물 구성비를 가진 3지역을 선정하여 대상 지역별로 2008년 1년간(1.1~12.31)의 실제 운전실적을 이용하여 지역난방 사용자의 일일 및 연간 열소비 패턴을 분석하고, 지역별 상호 차이점을 파악하기 위하여 주택과 건물의 열소비 패턴을 비교 분석하였다. 특히 본 연구에서는 실제 주택 및 건물 지역난방 사용자가 사용한 열소비 패턴을 매시간대별로 파악하고, 연결 열부하(난방면적 ${\times}$ 단위열부하 : 시설용량과 지역난방 배관망의 설계기준이 되는 열부하로 난방면적에 용도별 단위열부하를 곱하여 산출[Gcal/h])와의 관계를 분석하여 일일, 연간 및 최대 부하율 결과값을 도출함으로써 주택 및 건물 지역난방 사용자 비율에 따른 최적의 열원시설 용량산정이 가능케 하고 수요개발(해당 시설용량으로 열공급이 가능한 지역난방 사용자의 범위로 각 사용자기계실의 연결열부하 합과 같음.)단계에서의 정확한 방향을 제시할 수 있는 근거를 도출하였다.

골밀도 측정의 올바른 질 관리방법 (Appropriate image quality management method of bone mineral density measurement)

  • 김호성;동경래
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2009년도 춘계 종합학술대회 논문집
    • /
    • pp.1141-1149
    • /
    • 2009
  • 골밀도 측정은 정확도와 정밀도가 우수하여야 작은 골량의 변화에도 진정한 생물학적 변화를 알 수 있다. 따라서 장비 및 검사자의 올바른 질 관리를 통하여 골밀도 검사의 신뢰성을 높이는 것을 목적으로 한다. 장비관리방법은 각각의 골밀도 장비 제조사에서 권고하는 팬텀을 이용하여 10~25회 측정하여 기준 값과 허용 범위를 정하고 검사가 있는 날에 매일 측정하거나 일주일에 3회 이상 측정하여 실제 골밀도의 값의 변화 유무를 확인하여야 한다. 또한 측정된 팬텀의 골밀도 수치를 기록하여 Shewart control chart와 CUSUM control chart를 만들어 각각의 Rule에 따라 평가한다. 이러한 관리는 장비의 설치 및 이동 시에 반드시 행해져야 한다. 검사자 관리방법은 정밀도 측정으로 평가하는데 정밀도는 재검사하였을 때에 실제 생물학적의 변화 없이 수치상의 결과값을 똑같이 재현할 수 있는지 알아보는 것이다. 측정 방법은 환자를 두 번씩 30번 측정하는 방법과 세 번씩 15번 측정하는 방법이 있다. 측정에서 중요한 것은 한 번 검사 후 두번째나 세 번째 검사에서도 반드시 검사 테이블에서 내려왔다 다시 올라가서 검사를 해야 한다. 측정된 골밀도 수치를 이용하여 정밀오차를 산출하여 95% 신뢰수준으로 정밀오차에 2.77을 곱하여 최소한의 생물학적 골밀도 변화를 산출한다. 골밀도 장비는 과학의 발달로 인하여 장비의 정확 오차가 1%이내로 줄었기 때문에 장비관리와 측정자의 기계조작 및 검사 오차를 잘 관리한다면 검사의 신뢰성 확보에 도움을 줄 것이다.

  • PDF

심층신경망 모델을 이용한 대기오염망 자료확정 알고리즘 연구 (A Study on the Air Pollution Monitoring Network Algorithm Using Deep Learning)

  • 이선우;양호준;이문형;최정무;윤세환;권장우;박지훈;정동희;신혜정
    • 융합정보논문지
    • /
    • 제11권11호
    • /
    • pp.57-65
    • /
    • 2021
  • 본 논문은 딥 러닝(Deep Learning)을 이용하여 대기오염측정망 데이터 중 특정 증상이 나타나는 이상 데이터를 탐지하는 방법을 제시한다. 기존 방법들은 일반적으로 시계열 데이터 내에서 기존과는 다른 특이한 패턴이 나타나는 데이터를 탐지하여 이상치로 분류하며, 이는 특정 증상만을 탐지하기에는 적합하지 않다. 본 논문에서는 주로 이미지의 전경 분리(Sementic Segmentation)에 사용되는 DeepLab V3+ 모델의 2차원 합성곱 신경망 구조를 1차원 구조로 변형하여 이미지 대신 여러 센서의 시계열 측정값을 입력받고 특정 증상이 나타나는 데이터를 탐지하도록 하는 방법을 제시한다. 또한, 데이터에 '조각별 집계 근사법(Piecewise Aggregate Approximation)'을 적용하여 잡음이 많은 대기오염측정망 데이터의 복잡도를 줄임으로써 성능을 높인다. 실험 결과를 통해 준수한 성능으로 이상치 탐지를 수행할 수 있음을 확인할 수 있다.

3차원 객체 탐지를 위한 어텐션 기반 특징 융합 네트워크 (Attention based Feature-Fusion Network for 3D Object Detection)

  • 유상현;강대열;황승준;박성준;백중환
    • 한국항행학회논문지
    • /
    • 제27권2호
    • /
    • pp.190-196
    • /
    • 2023
  • 최근 들어, 라이다 기술의 발전에 따라 정확한 거리 측정이 가능해지면서 라이다 기반의 3차원 객체 탐지 네트워크에 대한 관심이 증가하고 있다. 기존의 네트워크는 복셀화 및 다운샘플링 과정에서 공간적인 정보 손실이 발생해 부정확한 위치 추정 결과를 발생시킨다. 본 연구에서는 고수준 특징과 높은 위치 정확도를 동시에 획득하기 위해 어텐션 기반 융합 방식과 카메라-라이다 융합 시스템을 제안한다. 먼저, 그리드 기반의 3차원 객체 탐지 네트워크인 Voxel-RCNN 구조에 어텐션 방식을 도입함으로써, 다중 스케일의 희소 3차원 합성곱 특징을 효과적으로 융합하여 3차원 객체 탐지의 성능을 높인다. 다음으로, 거짓 양성을 제거하기 위해 3차원 객체 탐지 네트워크의 탐지 결과와 이미지상의 2차원 객체 탐지 결과를 결합하는 카메라-라이다 융합 시스템을 제안한다. 제안 알고리즘의 성능평가를 위해 자율주행 분야의 KITTI 데이터 세트를 이용하여 기존 알고리즘과의 비교 실험을 수행한다. 결과적으로, 차량 클래스에 대해 BEV 상의 2차원 객체 탐지와 3차원 객체 탐지 부분에서 성능 향상을 보였으며 특히 Voxel-RCNN보다 차량 Moderate 클래스에 대하여 정확도가 약 0.47% 향상되었다.