• Title/Summary/Keyword: 골재 구조

Search Result 497, Processing Time 0.026 seconds

An Experimental Study on the Drying Shrinkage of Concrete Using High-Quality Recycled Sand (고품질 순환잔골재를 사용한 콘크리트의 건조수축 특성에 관한 실험적 연구)

  • Song, Ha-Young;Lee, Sang-Soo;Lee, Do-Heun;Lee, Jong-Gou;Kim, Jae-Hwan;Lim, Hyon-Ung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.136-143
    • /
    • 2006
  • In this study, recently it is urgently required that demolition waste concrete has to be recycled on the construction because urban development is accelerated and redevelopment project is rapidly expanded, production quantity of construction and demolition waste concrete is being increased. As a results of drying shrinkage test under restrained and unrestrained condition, although workability and mechanical properites of concrete using HQRS were similar to that of concrete using natural sand, there were a great difference in deformation characteristic of dry shrinkage according to replacement ratio of HQRS. And, it makes sure that use of HQRS instead of partial nature sand was effective because drying shrinkage of concrete using 30 volume percentage of HQRS was smaller than that using only natural sand. Therefore, it is the objective of this study to provide the fundamental data about the re-application as an analysis of the drying shrinkage characteristics of concrete using HQRS and it is able to creta a high value-added by using HQRS.

  • PDF

Chloride Diffusivity of Concrete using Recycled Aggregate by Strength Levels (강도수준별 순환골재 콘크리트의 염화물 확산특성)

  • Lee, Jun;Lee, Bong-Chun;Cho, Young-Keun;Jung, Sang-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.102-109
    • /
    • 2016
  • This paper presents mechanical properties and chloride diffusivity of the recycled aggregate concretes(RAC) in which natural coarse aggregate was replaced by recycled coarse aggregate(RCA) by compressive strength levels(20, 35, 50 MPa). A total of 9 RAC were produced and classified into three series, each of which included three mixes designed with three compressive strength levels of 20 MPa, 35 MPa and 50 MPa and three RCA replacement ratios of 0, 50 and 100%. Engineering properties of RAC were tested for slump test, air content, compressive strength, chloride penetration depth and chloride diffusion coefficient. The test results indicated that the workability of RAC could be improved or same by RCA replacement ratios, when compared with that containing no RCA. This is probably because of the RCA shape improving the workability of RAC. Also, the test results showed that the compressive strength was decreased by 9~10% as the RCA replacement ratios increase. Furthermore, the result indicated that the measured chloride diffusion coefficient increases by 144% with the increase of the RCA replacement. In the case of the concrete having low level compressive strength, the increase of chloride diffusion coefficient tends to be higher when using the RCA. However, the trend of chloride diffusion coefficient in high level compressive strength concrete is similar to that obtained in general concrete. This is because that the effect of the RCA replacement could be a decrease with increase of compressive strength. Therefore, an advance on the admixture application and mix ratio control are required to improve the chloride resistivity when using the recycled aggregate in large scale.

An experimental Study on the Fundamental Properties of Lightweight Aggregate Concrete (경량골재 콘크리트의 기초물성에 관한 실험적 연구)

  • Baek, Dong-Il;Han, Hyun-Sun;Kim, Myung-Sik;Jang, Hee-Suk;Kim, Chung-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.335-336
    • /
    • 2009
  • In this study, the properties of lightweight concrete which is beneficial to cost and technique by reducing self weight of structure member was carried out basic research. The unit weight, compressive strength, splitting tensile strength test have been conducted with producting plain concrete, lightweight aggregate concrete type I and type II to check the basic properties. The compressive strength of 21MPa was obtained easily by using lightweight aggregate concrete and addition of silica fume increase the compressive strength slightly. To use lightweight aggregate concrete for civil engineering structure, systematic and rigorous studies are necessary.

  • PDF

Study on the Properties of Porous Concrete According to the Aggregate Shape and Size (골재 입형 및 크기에 따른 포러스 콘크리트의 특성에 관한 연구)

  • Lim, Seo-Hyung;Kang, Hyun-Sik;Jee, Nam-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.93-100
    • /
    • 2005
  • The purpose of this study is to investigate the physical properties of porous concrete according to the aggregate shape and size which is produced by con crusher and impact crusher. For this purpose, the selected test variables were the aggregate size and shape, the ratio of water to cement and the ratio of paste to aggregate. The results of this study showed that its economic performance and physical properties were improved using the aggregate made by impact crusher. The coefficient of permeability and compressive strength of porous concrete had a close correlationship with the void ratio, and it was suggested as a function of void ratio.

Effect of Replacing Fine Aggregate by Cathode-Ray Tube(CRT) Waste Glass on Gamma-ray Shielding Properties of Cement Mortar Specimen (폐 브라운관(CRT) 유리의 잔골재 대체가 모르타르 시험체의 감마선 차폐에 미치는 영향)

  • Choi, Yoon-Suk;Lee, Seon-Min;Kim, Tae-Sang;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.172-180
    • /
    • 2019
  • In this study, the microstructure and gamma-ray shielding efficiency of CRT glass mortar specimen were evaluated with replacement ratio and material properties. The results show that as the replacement ratio of CRT waste glass increases, the volume of pores with diameters below 50 nm and above 400 nm is increased. Also, the half-value layer of CRT glass mortar decreased with the increasing of linear attenuation coefficient. In addition, compressive and flexural strength were reduced when CRT waste glass was replaced as the fine aggregate, but the mechanical performance of CRT mortar specimen could be obtained by substitution of the mineral admixture.

Evaluation on Strain Properties of 60 MPa Class High Strength Concrete according to the Coarse Aggregate Type and Elevated Temperature Condition (60MPa급 고강도 콘크리트의 굵은골재 종류와 고온상태에 따른 변형특성 평가)

  • Yoon, Min-Ho;Choe, Gyeong-Cheol;Lee, Tae-Gyu;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • Strain properties of concrete member which acts as an important factor in the stability of the concrete structure in the event of fire, significantly affected the characteristics of the coarse aggregate, which accounts for most of the volume. For this reason, there are many studies on concrete using artificial lightweight aggregate which has smaller thermal expansion deformation than granite coarse aggregate. But the research is mostly limited on concrete using clay-based lightweight aggregate. Therefore, in this study, the high temperature compressive strength and elastic modulus, thermal strain and total strain, high temperature creep strain of concrete was evaluated. As a result, remaining rate of high-temperature strength of concrete using lightweight aggregate is higher than concrete with general aggregate and it is determined to be advantageous in terms of structural safety and ensuring high-temperature strength from the result of the total strain by loading and strain of thermal expansion. In addition, in the case of high-temperature creep, concrete shrinkage is increased by rising loading and temperature regardless of the type of aggregate, and concrete using lightweight aggregate shows bigger shrinkage than concrete with a granite-based aggregate. From this result, it is determined to require additional consideration on a high temperature creep strain in case of maintaining high temperature like as duration of a fire although concrete using light weight aggregate is an advantage in reducing the thermal expansion strain of the fire.

Characterization of artificial aggregates fabricated with direct sintering method (직화소성법으로 제조된 인공골재의 특성 분석)

  • Kim, Kang-Duk;Kang, Seun-Ggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.1
    • /
    • pp.34-40
    • /
    • 2011
  • The bulk density, water absorption and microstructure of the artificial aggregates were controlled as a function of sintering temperature (1100 and $1200^{\circ}C$) and time (10~60 min) in the fabrication process of the artificial aggregates by the direct sintering process using dredged soil, the inorganic wastes. Also, the physical properties of the artificial aggregates fabricated according to the different sintering methods such as the direct sintering method used in this study and the increasing temperature sintering method used in the previous report, were compared and analysed. The bulk density of aggregates sintered at $1200^{\circ}C$ by the direct sintering method showed below 1.0, and the thickness of a shell and the pore size of the black core were increased with sintering temperature. Also, in the same sintering temperature, the area of black core was decreased, the thickness of shell was increased and the water absorption was decreased with sintering time. The black core of artificial aggregates of bulk density below 1.0 had the similar microstructure, regardless of sintering methods. In contrast, the shell of aggregates fabricated by the increasing temperature sintering method showed more dense microstructure than that by direct sintering method, hence the water absorption of aggregate sintered using direct sintering was relatively high. Thus, the direct sintering method is suitable for fabrication of artificial aggregates in ceramic carriers or absorbents applications.

Evaluation of Structural Performance of RC Beams Retrofitted Steel Fiber consequential Replacement of Recycled Coarse Aggregate and Ground Granulated Blast Furnace Slag (순환골재와 고로슬래그 미분말을 치환한 강섬유 보강 RC보의 구조성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.477-484
    • /
    • 2013
  • In this study, eleven reinforced concrete beams, ground granulated blast furnace slag, replacing recycled coarse aggregate (BRS series) and recycled coarse aggregate with steel fiber (BSRS series), and standard specimen (BSS) were constructed and tested under monotonic loading. Experimental programs were carried out to improve and evaluate the shear performance of such test specimens, such as the load-displacement, the failure mode and the maximum load carrying capacity. All the specimens were modeled in 1/2 scale-down size. Test results showed that test specimens (BSRS Series) was increased the compressive strength by 9%, the maximum load carrying capacity by 1~6% and the ductility capacity by 1.02~1.13 times in comparison with the standard specimen (BSS). And the specimens (BSRS Series) showed enough ductile behavior and stable flexural failure.

Effect of the Broken Red Bricks on the Mechanical Properties of Reinforced Concrete Beams (부순 적벽돌 혼입량에 따른 철근콘크리트 보의 역학적 특성에 관한 연구)

  • Kim, Jeong Sup;Shin, Yong Seok;Cho, Cheol Hee;No, Sung Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.83-90
    • /
    • 2008
  • The purpose of this study is to attempt to use broken red brick, which is categorized as impurities of circular aggregate to thick aggregate, as a replacement for concrete. Through the material test and performance test for each mixing rate of the broken red brick (0%, 30%, 60%), the following conclusion was reached by studying the material and structural characteristics of circular aggregate to the concrete. Even though broken red brick, which is categorized as impurities of circular aggregate, is mixed 30% with normal rubble, the compression strength, intensity strength, and curving strength was similar to that of concrete that uses normal rubble. Therefore, concrete beam made with broken red brick can be applied to the real construction field. Also, the study regarding the cutting test of the concrete that uses broken red brick and regarding applying and mixing admixture that can increase the ductility factor will be required in the future.

Study on the Strategy for Managing Aggregate Supply and Demand in Gyeongsangbuk-do, South Korea (경상북도 골재수요-공급 관리 전략 연구)

  • Jin-Young Lee;Sei Sun Hong;Chul Seoung Baek
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.161-175
    • /
    • 2024
  • Aggregate typically refers to sand and gravel formed by the transportation of rocks in rivers or artificially crushed, constituting a core resource in the construction industry. Gyeongsangbuk-do, the largest administrative area in South Korea, produces various sources of gravel, including forest, land (excluding other sources), river, and crushed stone. As of 2022, it has extracted approximately 6.96 million cubic meters of aggregate, with permitted production totaling around 4.07 million cubic meters and reported production of about 2.88 million cubic meters. The aggregate demand in Gyeongsangbuk-do is estimated to be 12.39 million cubic meters according to the estimation method in Ready-Mix Concrete. From the supply perspective, about 120 extraction sites are operational, with most municipalities maintaining an appropriate balance between aggregate demand and supply. However, in some areas, there is inbound and outbound transportation of aggregate to neighboring regions. Regions with significant inbound and outbound aggregate transportation in Gyeongsangbuk-do are areas connected to Daegu Metropolitan City and Pohang City along the Gyeongbu rail line, showing a high correlation with population distribution. Gyeongsangbuk-do faces challenges such as population decline, aging rural areas, and insufficient balanced regional development. Analysis using GIS reveals these trends in gravel demand and supply. Currently in this study, Gyeongsangbuk-do meets its demand for aggregate through the supply of various aggregate sources, maintaining stable aggregate procurement. River and terrestrial aggregates may be sustained as short-term supply strategies due to the difficulty of longterm development. Considering the reliance on raw material supply for selective crushing, it suggests the need for raw material management to maintain stability. Gyeongsangbuk-do highlights quarries in the forest as an important resource for sustainable aggregate supply, advocating for the development of large-scale aggregate quarries as a long-term alternative. These research findings are expected to provide valuable insights for formulating strategies for sustainable management and stable utilization of aggregate resources.